期刊文献+

融合注意力机制的毫米波雷达人体动作识别方法

Human motion recognition method of millimeter-wave radar integrated with attention mechanism
下载PDF
导出
摘要 为解决少样本场景下毫米波雷达人体动作识别过程中卷积神经网络(CNN)易出现过拟合、训练效果不理想等问题,提出一种融入时序注意力机制的CNN和视觉转换器模型结合的方法.该方法首先对收到的雷达回波信息做预处理,再通过短时傅里叶变换(STFT)进行时频分析得到时频图,最终将带有特征信息的图像送入融合的网络模型中进行分类识别.实验结果表明,与其他4种模型的方法相比,本文提出的方法识别准确率最高,识别效果可达到91.57%.该方法能有效地增强网络对于时间维度建模,增加了网络收敛速度,达到了提升识别准确率的效果. In order to solve the problems that convolutional neural networks are prone to overfitting and unsatisfactory training results in the process of human motion recognition by millimeter wave radar in the scenarios with few samples,this paper proposes an approach combining convolutional neural network with the vision transformer(VIT)model that incorporates a temporal attention mechanism.Firstly,this method is used to preprocess the received radar echo information.Then the time-frequency graph is obtained through the time-frequency analysis by short-time Fourier transform(STFT).Finally,the images with characteristic information are fed into the integrated network model for classification and recognition.The experimental results show that compared with the other four models,the proposed method has the highest recognition accuracy,with the recognition effect reaching 91.57%.This method can effectively enhance the time dimension modeling of the network,increase the convergence speed of the network,and achieve the effect of improving recognition accuracy.
作者 蒋留兵 裴航舰 车俐 JIANG Liubing;PEI Hangjian;CHE Li(School of Information&Communication,Guilin University of Electronic Technology,Guilin 541004,China;Key Laboratory ofWireless Broadband Communication&Signal Processing in Guangxi,Guilin University of Electronic Technology,Guilin 541004,China)
出处 《空天预警研究学报》 CSCD 2023年第5期349-354,共6页 JOURNAL OF AIR & SPACE EARLY WARNING RESEARCH
基金 国家自然科学基金资助项目(61561010) 广西创新驱动发展专项资助(桂科AA21077008) “广西无线宽带通信与信号处理重点实验室”2022年主任基金项目资助(GXKL06220102,GXKL06220108) 桂林电子科技大学研究生教育创新计划资助项目(2022YXW07,2022YCXS080,2023YXW02)。
关键词 毫米波雷达 卷积神经网络 视觉转换器 注意力机制 动作识别 millimeter wave radar convolutional neural network(CNN) vision transformer(VIT) attention mechanism motion recognition

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部