期刊文献+

Transcranial direct current stimulation inhibits epileptic activity propagation in a large-scale brain network model 被引量:3

原文传递
导出
摘要 Transcranial direct current stimulation(tDCS)is a noninvasive technique that uses constant,low-intensity direct current to regulate brain activities.Clinical studies have shown that cathode-tDCS(c-tDCS)is effective in reducing seizure frequency in patients with epilepsy.Due to the heterogeneity and patient specificity of seizures,patient-specific epilepsy networks are increasingly important in exploring the regulatory role of c-tDCS.In this study,we first set the left hippocampus,parahippocampus,and amygdala as the epileptogenic zone(EZ),and the left inferior temporal cortex and ventral temporal cortex as the initial propagation zone(PZ)to establish a large-scale epilepsy network model.Then we set tDCS cathode locations according to the maximum average energy of the simulated EEG signals and systematically study c-tDCS inhibitory effects on the propagation of epileptic activity.The results show that c-tDCS is effective in suppressing the propagation of epileptic activity.Further,to consider the patient specificity,we set specific EZ and PZ according to the clinical diagnosis of 6 patients and establish patient-specific epileptic networks.We find that c-tDCS can suppress the propagation of abnormal activity in most patient-specific epileptic networks.However,when the PZ is widely distributed in both hemispheres,the treatment effect of c-tDCS is not satisfactory.Hence,we propose dual-cathode tDCS.For epilepsy models with a wide distribution of PZ,it can inhibit the propagation of epileptiform activity in other nodes except EZ and PZ without increasing the tDCS current strength.Our results provide theoretical support for the treatment of epilepsy with tDCS.
出处 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第12期3628-3638,共11页 中国科学(技术科学英文版)
基金 supported by the National Natural Science Foundation of China (Grant Nos.12202027,11932003,12272092,11972115) the China Postdoctoral Science Foundation (Grant No.2021TQ0025)。
  • 相关文献

参考文献2

共引文献2

同被引文献39

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部