期刊文献+

Enrichment of Mississippi Valley-type(MVT) deposits in the Tethyan domain linked to organic matter-rich sediments 被引量:2

原文传递
导出
摘要 The Tethyan domain hosts the world's most abundant hydrocarbon and Mississippi Valley-type(MVT) Pb-Zn resources. The relations among organic matter-rich sediments, MVT Pb-Zn mineralization, and the Tethyan tectonic evolution history are an important scientific issue. The data of paleogeographic reconstruction indicate that the Proto-, Paleo-, and NeoTethys oceans mainly lay in low latitude areas between 30°N and 45°S. The high temperature and precipitation and the lack of sea water overturning in stagnant basins resulted in high marine biological productivity and good preservation conditions for organic matter-rich sediments. Consequently, abundant organic matter-rich sediments were developed and preserved in the Tethyan domain and thus created abundant hydrocarbon resources. Mineralization age data demonstrate that MVT deposits mainly formed during the continent-continent convergence in the late stage of the Tethyan tectonic evolution. Deposits are located in the fold-and-thrust belts and forelands of the continent-continent convergence orogen, and spatially associated with hydrocarbon basins. Organic matter-rich sediments are well developed in MVT ore districts, where hydrocarbon activity appeared earlier than or nearly simultaneous with the Pb-Zn mineralization event. Hydrocarbon activity generally began earlier than the Pb-Zn mineralization in individual deposits. Organic matter-rich sediments and hydrocarbons mainly play the role of reducing agents in the MVT Pb-Zn mineralization process. Through bacterial or thermal reduction, dissolved sulfates from sedimentary strata were reduced to generate reduced sulfur for Pb-Zn sulfide mineralization. In summary, the Tethyan oceans have long been in low latitude areas near the equator, making the Tethyan domain develop abundant organic matterrich sediments and associated hydrocarbon resources which reduce sulfates to provide sufficient reduced sulfur for MVT PbZn mineralization in the region.
机构地区 SinoProbe Laboratory
出处 《Science China Earth Sciences》 SCIE EI CAS CSCD 2023年第12期2853-2870,共18页 中国科学(地球科学英文版)
基金 supported by the National Natural Science Foundation of China (Grant Nos. 92155305, 91855214, and 42125204) the National Key R&D Plan (Grant No. 2021YFC2901805)。
  • 相关文献

参考文献18

二级参考文献333

共引文献249

同被引文献20

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部