期刊文献+

基于磨削力的铣刀螺旋槽磨削工艺优化

Optimization of the milling cutter spiral groove grinding process based on grinding force
下载PDF
导出
摘要 为了提高铣刀磨削质量,以铣刀磨制过程中的磨削力为对象,通过求取砂轮与铣刀接触线的表达方程,建立铣刀螺旋槽磨削过程磨削力求解模型,讨论磨削力对铣刀磨削质量的影响。以影响磨削力的主要因素铣刀进给速度及磨削深度为变量,提出等进给速度及变进给速度两种减小磨削力、降低应变的优化方案。通过调节进给速度及磨削深度,在保证磨削效率不变的情况下,减小磨削力,从而减小螺旋槽在磨削过程中因磨削力而产生的形变量。建立铣刀三维模型,导入ANSYS的Workbench中进行磨削过程仿真,得出具体形变量,验证磨削优化方案的准确性。 In order to optimize the milling cutter grinding process,taking the grinding force in the grinding process of the milling cutter as the object,the grinding solution model of the grinding cutter spiral groove grinding process was established by finding the expression of the contact line between the grinding wheel and the milling cutter,and the influence of the grinding force on the grinding quality of the milling cutter was discussed.Taking the main factors affecting the grinding force,milling cutter feed speed and grinding depth,two optimization schemes were proposed—equal feed speed and variable feed speed.By adjusting the feed speed and grinding depth,the grinding force was reduced under the condition that the grinding efficiency remains unchanged,thereby reducing the shape variable caused by the grinding force in the grinding process of the spiral groove.The 3D model of the milling cutter was established and imported into ANSYS for grinding process simulation to obtain specific shape variables to verify the accuracy of the grinding optimization scheme.
作者 张富能 林志伟 薛勇 李坰其 傅建中 ZHANG Funeng;LIN Zhiwei;XUE Yong;LI Jiongqi;FU Jianzhong(Institute of Manufacturing Technology and Equipment Automation,Zhejiang University,Hangzhou 310015,China)
出处 《现代制造工程》 CSCD 北大核心 2024年第2期61-67,75,共8页 Modern Manufacturing Engineering
基金 浙江省重点研发计划项目基金项目(2021C01096)。
关键词 磨削力 进给速度 磨削深度 磨削效率 仿真 grinding force feed rate grinding depth grinding efficiency simulation
  • 相关文献

参考文献6

二级参考文献48

  • 1Piegl Leslie A, Richard Arnaud M. Tessellating trimmed NURBS surfaees[J]. Computer-Aided Design,1995,27(1):16-26.
  • 2Sheng X, Hirseh B E. Triangulation of trimmed surfaces in parametric space [J]. Computer-Aided Design, 1992, 24 (8) :437-444.
  • 3Anglada Mare vigo. An improved incremental algorithm for constructing restricted delaunay triangulations[J]. Computer & Graphics, 1997,21(2) :215-223.
  • 4章毓晋,图象工程(下册)[M].北京:清华大学出版社,2003:166~167.
  • 5MALKIN S.磨削技术理论与应用[M].蔡光起等,译.沈阳:东北大学出版社,2002.
  • 6Sheth D S, Malkin S. CAD/CAM for Geometry and Process Analysis of Helical Groove Machining[J]. Annals of the CIRP-Manufacturing Technology,1990, 39(1): 129-132.
  • 7Hsieh J F. Mathematical Model and Sensitivity Analy- sis for Helical Groove Machining [J]. International Journal of Machine Tools and Manufacture, 2006, 46 (10) : 1087-1096.
  • 8Chen J Y, Lee B Y, Chen C H. Planning and Anal- ysis of Grinding Processes for End Mills of Cemen- ted Tungsten Carbide[J]. Journal of Materials Pro- cessing Technology, 2008, 201(1/3) :618-622.
  • 9Chen F, Bin H. A Novel CNC Grinding Method for the Rake Face of a Taper Ball-end Mill with a CBN Spherical Grinding Wheel [J]. The International Journal of Advanced Manufacturing Technology, 2009, 41(9): 846-857.
  • 10Chiang C J, Fong, Z H, Tseng J T. Computerized Simulation of Thread Form Grinding Process [J]. Mechanism and Machine Theory, 2009, 44 (4) : 685-696.

共引文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部