摘要
掘进机截割减速器的齿轮容易过早损坏。提出一种基于齿轮油磨粒信息建立的门控双注意单元(GDAU)模型,可用于解决齿轮的剩余寿命预测问题。利用掘进机截割减速器试验台对该模型进行试验验证。与长短时记忆(LSTM)网络和门控递归单元(GRU)神经网络进行对比,结果表明,GDAU模型对齿轮剩余寿命的预测效果更好,在较短时间内能够迅速收敛,其损失量仅有0.0016,与LSTM和GRU模型相比有更快的收敛速度及更高的预测精度。
The gears of the roadheader cutting reducer are prone to premature damage.A gated double attention unit(GDAU)model based on gear oil abrasive particle information was proposed,which can be used to solve the remaining life prediction problem of gear.The model was tested and verified by using the roadheader cutting reducer test bench.Compared with the long short-term memory(LSTM)network and gated recurrent unit(GRU)neural network,the results show that the GDAU model has a better prediction effect on the remaining life of the gear,can converge quickly in a short time,and its loss is only 0.0016,which has a faster convergence speed and higher prediction accuracy than the LSTM and GRU models.
作者
权钰云
秦彦凯
关重阳
庞新宇
刘国鹏
Quan Yuyun;Qin Yankai;Guan Chongyang;Pang Xinyu;Liu Guopeng(CCTEG Taiyuan Research Institute Co.,Ltd.,Taiyuan 030006,China;Shanxi Tiandi Coal Mining Machinery Co.,Ltd.,Taiyuan 030006,China;School of Mechanical and Transportation Engineering,Taiyuan University of Technology,Taiyuan 030024,China)
出处
《煤矿机械》
2024年第2期156-160,共5页
Coal Mine Machinery
基金
山西省基础研究计划资助项目(20210302124680)
山西省重点研发计划(202102010101006)
中国煤炭科工集团有限公司重点项目(2021-2-TD-ZD003)。
关键词
掘进机
寿命预测
油液磨粒
GDAU模型
注意力机制
roadheader
life prediction
oil abrasive particle
GDAU model
attention mechanism