期刊文献+

基于图注意力网络的小样本知识图谱补全

Graph attention network for few-shot knowledge graph completion
下载PDF
导出
摘要 提出了一种基于图注意力网络(graph attention network,GAT)的小样本知识图谱补全方法.该方法通过图注意力网络的注意力机制赋予邻居不同的权重,生成更强大的特征表示,通过匹配网络匹配查询集与参考集,选择相似性度量分数最高的候选实体作为补全后的尾实体.实验结果表明,图注意力网络模型对小样本知识图谱中缺失的链接能够进行有效的预测. In this paper,we propose a few-shot knowledge graph completion method based on Graph Attention Network(GAT),which gives different weights to neighbors through the attention mechanism of GAT to generate a more powerful feature representation.By matching the query set and reference set through the matching network,the candidate entity with the highest similarity score is selected as the completed tail entity.The experimental results show that the graph attention network can effectively predict the missing links in the few-shot knowledge graph.
作者 闵雪洁 王艳娜 周子力 王妍 董兆安 MIN Xuejie;WANG Yanna;ZHOU Zili;TWANG Yan;DONG Zhaoan(School of Cyber Scienceand Engineering,273165,Qufu;School of Computer Science,Qufu Normal University,276826,Rizhao,Shandong,PRC)
出处 《曲阜师范大学学报(自然科学版)》 CAS 2024年第1期72-76,共5页 Journal of Qufu Normal University(Natural Science)
基金 山东省自然科学基金(ZR2020MF149) 山东省高校科技计划(J18KB161) 教育部产学合作协同育人项目(202102291003)。
关键词 知识图谱补全 链接预测 小样本学习 图注意力网络 knowledge graph completion link prediction few-shot learning graph attention network
  • 相关文献

参考文献2

二级参考文献3

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部