期刊文献+

基于联合时序场景和改进TCN的高比例新能源电网负荷预测

Short-term Load Forecasting for Power System with High Proportion New Energy Based on Joint Sequential Scenario and Improved TCN
下载PDF
导出
摘要 为充分挖掘新型电力系统建设过程中高比例新能源并网对负荷预测的影响,以风光负荷数据为研究对象,提出一种基于联合时序场景和改进型时间卷积网络的短期负荷预测方法。首先,基于3σ准则对风光负荷历史数据进行分析,剔除异常数据,然后应用联合时序场景刻画负荷需求与风光出力的相关性,分类出不同负荷预测场景。接着,利用随机森林算法进行负荷预测特征量提取,构建随机森林时间卷积网络(RF-TCN)预测模型,并采用Bootstrap算法对预测结果进行修正。最后,以甘肃省2022年数据为例进行仿真,并设置4种对比算例。仿真结果证明了所提方法的有效性,以期在新型电力系统建设过程中发挥积极作用。 In order to fully explore the influence of high proportion of new energy in the power grid on load forecasting,wind power solar power load data is used as the research object to forecast the load changes through a load forecasting method combining modified time convolution network(TCN)and joint sequential scenario.Firstly,the historical data is analyzed based on the 3σcriterion to eliminate the abnormal data,then the joint sequential scenario is applied to depict the correlation between load demand and power output of new energy,and classify different load prediction scenarios.Afterwards,load prediction feature extraction is performed based on random forest(RF)algorithm to construct RF-TCN network prediction model,and the prediction results are corrected by Bootstrap algorithm.Finally,the data of a region of Gansu province is taken for example simulation and four comparative examples are set.The simulation results prove the effectiveness of the proposed method and expect to play a positive role in the construction of the new power system.
作者 许青 张龄之 梁琛 李亚昕 XU Qing;ZHANG Lingzhi;LIANG Chen;LI Yaxin(State Grid Gansu Electric Power Company,Lanzhou,Gansu 730030,China;Electric Power Research Institute of State Grid Gansu Electric Power Company,Lanzhou,Gansu 730070,China)
出处 《广东电力》 北大核心 2024年第1期1-7,共7页 Guangdong Electric Power
基金 国网甘肃省电力公司管理咨询项目(SGGSKY00WYWT2310226)
关键词 新型电力系统 联合时序场景 高比例新能源电网 负荷预测 3σ准则 时间卷积网络 随机森林 BOOTSTRAP法 new power system joint sequential scenario power system with high proportion new energy load forecasting 3σcriterion temporal convolution network(TCN) random forest(RF) Bootstrap algorithm
  • 相关文献

参考文献15

二级参考文献231

共引文献341

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部