摘要
针对具有强随机性、集中式、大容量的风电与光伏并网给输电网的安全运行及新能源消纳带来的巨大挑战,考虑风电与光伏出力的不确定性和时序相关性,提出高比例新能源接入的输电网外送通道与储能的分布鲁棒优化协同规划方法。首先,以外送通道与储能的规划共同作为决策变量,将富余的新能源资源通过规划的外送通道送出;其次,利用储能缓解和抑制新能源发电的间歇性和随机波动性,促进实现新能源的全额消纳;然后,应用二阶锥凸松弛、泰勒级数展开等技术,将原混合整数非凸非线性规划模型转化成混合整数凸规划模型,以实现高效求解。最后,以改进IEEE 39节点输电系统为算例进行仿真计算,验证了所提模型和算法的正确性和有效性。
In response to the significant challenges posed by strong randomness,centralized,and high-capacity integration of wind and photovoltaic power to the safe operation of the transmission network and the consumption of new energy,this paper considers the uncertainty and time correlation of wind and photovoltaic output,and proposes a distributionally robust optimization(DRO)collaborative planning method for the external transmission channels and energy storage in the transmission network with a high proportion of renewable energy.Firstly,the planning of the external transmission channels and energy storage are jointly used as decision variables and the surplus renewable energy resources are sent out through the external transmission channels.Secondly,the functions of energy storage for peak shaving,valley filling and suppressing the random fluctuations of new energy are used to promote the full consumption of renewable energy.Then,using techniques such as second-order cone convex relaxation and Taylor series expansion,the original mixed integer non-convex nonlinear programming model is transformed into a mixed integer convex programming model to achieve efficient solution.Finally,an improved IEEE 39 bus transmission system is taken as a case study to verify the validity of the proposed model and method.
作者
李思能
刘志勇
曾庆彬
LI Sineng;LIU Zhiyong;ZENG Qinbin(CSG Guangdong Shaoguan Power Supply Bureau,Shaoguan,Guangdong 512000,China;Guangzhou Power Technology Co.,Ltd.,Guangzhou,Guangdong 510700,China)
出处
《广东电力》
北大核心
2024年第1期49-59,共11页
Guangdong Electric Power
基金
广东电网有限责任公司重点电力规划专题项目(030200QQ00220001)。
关键词
高比例新能源接入
输电网规划
协同规划
分布鲁棒优化
时序相关性
high proportion of renewable energy
transmission network planning
collaborative planning
distributionally robust optimization
time correlation