期刊文献+

基于改进相关向量机的锂电池剩余使用寿命预测 被引量:1

Remaining useful life prediction of Li-ion batteries based on improved relevance vector machine
下载PDF
导出
摘要 精确预测锂离子电池剩余使用寿命对于保障设备安全运行十分重要。但电池寿命预测中存在诸如数据噪声和容量再生等不确定性来源,这将导致预测精度大幅下降。为解决这一问题,使用变分模态分解方法对从充电和容量数据中提取的健康因子进行滤波分解,并利用贝叶斯优化方法对相关参数进行优化,提出一种基于多核相关向量机的锂离子电池剩余使用寿命预测模型。利用美国国家航空航天局(NASA)和Oxford电池数据集对所提出的模型进行验证,研究结果表明:所提出的基于变分模态分解和贝叶斯优化的多核相关向量机(VMD-BAYES-HRVM)方法的预测性能不受预测起始点和截止电压的影响,预测结果准确性更高,95%置信区间的跨度更小,证明了所提出方法的有效性。 The accurate prediction of the remaining life of lithium-ion batteries is important to ensure safe operation of equipment.However,the sources of uncertainty in battery life prediction,such as data noise and capacity regeneration,can lead to significant degradation of prediction accuracy.To solve the problem,the variational mode decomposition was used to filter and decompose the health factors extracted from charging and capacity data,the relevant parameters were optimized by using the Bayesian optimization method,and a Li-ion battery remaining life prediction model based on the hybrid kernel relevance vector machine was proposed.The proposed model was validated by using the NASA and Oxford battery datasets.The results show that the prediction performance of the proposed VMD-BAYES-HRVM method is not affected by the prediction starting point and cut-off voltage,and the prediction results are more accurate and have a smaller span of 95%confidence interval,which proves the effectiveness of the proposed method.
作者 侯小康 袁裕鹏 童亮 HOU Xiaokang;YUAN Yupeng;TONG Liang(School of Naval Architecture,Ocean and Energy Power Engineering,Wuhan University of Technology,Wuhan Hubei 430063,China;School of Transportation and Logistics Engineering,Wuhan University of Technology,Wuhan Hubei 430063,China;National Engineering Research Center for Water Transport Safety(WTS Center),Wuhan Hubei 430056,China)
出处 《电源技术》 CAS 北大核心 2024年第2期289-298,共10页 Chinese Journal of Power Sources
基金 国家重点研发计划(2021YFB2601603)。
关键词 锂离子电池 剩余使用寿命 变分模态分解 贝叶斯优化 多核相关向量机 lithium-ion batteries remaining useful life variational mode decomposition Bayesian optimization hybrid kernel relevance vector machine
  • 相关文献

参考文献5

二级参考文献38

  • 1申建斌,唐有根,李玉杰,谢正和.无监督聚类在锂离子电池分类中的应用[J].计算机与应用化学,2007,24(3):305-308. 被引量:13
  • 2戴海峰,张晓龙,顾伟军,等.电动汽车用动力锂离子电池寿命问题研究综述[J].中国科技论文在线,2013,3(57):2-3.
  • 3国家发展和改革委员会.QC/T743,2006电动汽车用锂离子蓄电池[S].北京:国家发展和改革委员会,2006,.
  • 4ANDRE D, APPEL C, SOCZKA-GUTH T, et al. Advanced mathe- matical methods of SOC and SOH estimation for lithium-ion bat- teries[J]. Journal of Power Sources, 2013, 224: 20-17.
  • 5HUET F. A review of impedance measurements for determination of the state-of-charge or state-of-health of secondary batteries [J]. Journal of Power Sources, 1998, 70: 59-69.
  • 6RODRIGUES S, MUNICHANDRAIAH N, SHUKLA A K. A re- view of state-of-charge indication of batteries by means of A.C. impedance measurements[J]. Journal of Power Sources, 2000, 87: 12-20.
  • 7BUNDY K, KARLSSON M, LINDBERGH G, et al. An electro- chemical impedance spectroscopy method for prediction of the state of charge of a nickel-metal hydride battery at open circuit and during discharge[J]. Journal of Power Sources, 1998, 72:118-125.
  • 8SHALINI R, MUNICHANDRAIAH N, SHUKLA A K. AC imped- ance and state-of-charge analysis of a sealed lithium-ion recharge- able battery[J]. Journal of Solid State Electrochem, 1999, 3:397-405.
  • 9VISWANATHAN V V, SALKIND A J, KELLEY J J. Effect of state of charge on impedance spectrum of sealed cells part I:Ni-Cd cells[J]. Journal of Solid State Electrochem, 1995, 25: 716-728.
  • 10SAUVANT-MOYNOT V, BERNARD J, MINGANT R, et al. A LIDISSI, a research program to evaluate electrochemical imped-ance spectroscopy as a SOC and SOH diagnosis tool for Li-ion batteries[J]. Oil & Gas Science and Technology, 2010,65(1): 79- 89.

共引文献60

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部