期刊文献+

老年慢性阻塞性肺疾病并发肌少症风险预警模型构建与验证

Construction and verification of risk early warning model for senile chronic obstructive pulmonary disease complicated with sarcopenia
下载PDF
导出
摘要 目的探讨老年慢性阻塞性肺疾病(COPD)并发肌少症风险预警模型构建与验证。方法回顾性选取新疆维吾尔自治区人民医院呼吸内科2020年1月~2021年12月收治的老年COPD患者139例,根据COPD患者是否患有肌少症将其分为肌少症组(n=52)和非肌少症组(n=87)。分析影响老年COPD并发肌少症的危险因素。对并发肌少症风险的预测模型进行构建,另选取2020年6月~2021年12月收治的69例COPD患者作为验证组,对已经构建的模型进行外部验证。结果单因素结果提示,COPD患者并发肌少症的发生与年龄、体质量指数(BMI)、吸烟史、年急性加重次数、慢性阻塞性肺疾病评估测试(CAT)评分、第1秒用力呼气容积占用力肺活量的百分比(FEV 1 FVC%)、COPD病程有关(P<0.05)。多因素分析结果提示,年龄≥80岁、BMI<25 kg/m^(2)、年急性加重次数≥2、高CAT评分、较长的COPD病程是COPD患者并发肌少症发生的危险因素(P<0.05)。高FEV 1 FVC%是COPD患者并发肌少症发生的保护因素(P<0.05)。最终建立COPD患者并发肌少症发生的风险预测模型为logit P=-4.323+1.094×X年龄+0.914×X BMI+0.837×X吸烟史+0.846×X年急性加重次数+0.410×X CAT评分-0.069×X FEV1 FVC%+0.561×X COPD病程。采用Hosmer-Lemeshow检验构建的肌少症发生的预测模型的拟合程度,最终模型H-L检验χ^(2)=4.362,P=0.823,证明模型的拟合度较好;ROC曲线下面积(AUC)为0.756,95%CI=0.673~0.839(P<0.05),灵敏度为0.808,特异度为0.632。验证组对已经构建的模型进行外部验证,H-L检验χ^(2)=8.720,P=0.366,证明模型的拟合度较好;ROC曲线下面积(AUC)为0.808,95%CI=0.691~0.926(P<0.05),灵敏度为0.833,特异度为0.702。结论年龄≥80岁、BMI<25 kg/m^(2)、年急性加重次数≥2、高CAT评分、较长的COPD病程是COPD患者并发肌少症发生的危险因素,高FEV 1 FVC%是COPD患者并发肌少症发生的保护因素。构建的COPD患者并发肌少症发生的风险预测模型的预测效能较好,可对COPD患者并发肌少症发生的风险进行评估。 Objebtive To explore the construction and verification of risk early warning model for senile chronic obstructive pulmonary disease complicated with sarcopenia.Methods A retrospective analysis of 139 elderly patients with COPD admitted to the department of respiratory medicine of our hospital from January 2020 to December 2021 was conducted.According to whether COPD patients had sarcopenia,they were divided into two groups,sarcopenia group(n=52)and non-sarcopenia group(n=87).The risk factors affecting elderly COPD complicated with sarcopenia were analyzed.The prediction model of concurrent sarcopenia risk was constructed,and 69 COPD patients from June 2020 to December 2021 were selected as the verification group to externally verify the constructed model.Results The result of univariate analysis showed that the incidence of sarcopenia in COPD patients was significantly different from age,BMI,smoking history,annual number of acute exacerbations,CAT score,FEV1 FVC%,and COPD course(P<0.05).Multivariate analysis showed that age≥80 years,BMI<25 kg/m^(2),number of acute exacerbations≥2,high CAT score,and long COPD course were risk factors for sarcopenia in COPD patients(P<0.05).High FEV1 FVC%was a protective factor for sarcopenia in COPD patients(P<0.05).Finally,the risk prediction model of COPD patients complicated with sarcopenia was logit P=-4.323+1.094×X age+0.914×X BMI+0.837×X smoking history+0.846×X acute exacerbation times+0.410×X CAT score-0.069×X FEV1 FVC%+0.561×X COPD course.Hosmer-Lemeshow test was used to test the fitting degree of the prediction model of sarcopenia.The final model H-L testχ^(2)=4.362,P=0.823,which proved that the fitting degree of the model was good.The area under the ROC curve(AUC)was 0.756,95%CI was 0.673~0.839(P<0.05),sensitivity was 0.808,and specificity was 0.632.A total of 69 COPD patients from June 2020 to December 2021 were selected as the validation group to conduct external validation of the constructed model.H-L testχ^(2)=8.720,P=0.366,which proved that the fitting degree of the model was good.The area under the ROC curve(AUC)was 0.808 and 95%CI was 0.691~0.926.Conclusion Age≥80 years old,BMI<25 kg/m^(2),annual number of acute exacerbations≥2,high CAT score,and longer COPD course are risk factors for COPD patients with sarcopenia.High FEV1 FVC%is a protective factor for COPD patients with sarcopenia.The risk prediction model of COPD patients complicated with sarcopenia has a good predictive performance and can evaluate the risk of COPD patients complicated with sarcopenia.
作者 陈禧 肖江琴 黄莉 Chen Xi;Xiao Jiangqin;Huang Li(Department of Traditional Chinese Medicine,Xinjiang Uygur Autonomous Region People′s Hospital,Urumqi 830001,China)
出处 《中华保健医学杂志》 2023年第6期646-649,共4页 Chinese Journal of Health Care and Medicine
基金 新疆维吾尔自治区自然科学基金(2022D01C111)。
关键词 慢性阻塞性肺疾病 肌少症 影响因素 预警模型 Chronic obstructive pulmonary disease Sarcopenia Influencing factors Early warning model
  • 相关文献

参考文献18

二级参考文献107

共引文献273

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部