期刊文献+

基于模糊LQR的Spar型海上浮式风力机载荷抑制

LOAD SUPPRESSION OF SPAR-TYPES OFFSHORE FLOATING WIND TURBINE BASED ON FUZZY LQR
下载PDF
导出
摘要 针对复杂环境变化易引起海上浮式风力机不稳定的问题,提出一种基于模糊LQR、模糊PI相结合且易于工程应用的桨距控制新方案,实现维持浮式风力发电机组输出功率稳定、抑制浮台运动、减少叶根及塔基疲劳载荷的目的。模糊PI根据发电机转子转速误差变化动态选择期望的PI增益,模糊LQR基于模糊规则自适应调整闭环反馈增益,在保证风力机输出功率和浮台稳定的基础上,进一步减小叶根和塔基疲劳载荷。基于FAST与Matlab/Simulink在不同环境条件下进行联合仿真,验证所提方案的有效性和优越性;通过时域、频域分析表明,与PI控制相比,所提方案在减少叶根处平面外载荷和塔基横向载荷方面有明显改善效果。 Complex environmental changes are prone to cause instability of floating offshore wind turbines.A new pitch control scheme which is easy for engineering application is proposed based on fuzzy LQR and fuzzy PI to maintain the output power stabilization of the floating wind turbine,restrain the movement of the floating platform,and reduce the fatigue load of the blade root and tower foundation.The fuzzy PI dynamically selects the desired PI gain according to the variation of the generator rotor speed error.The fuzzy LQR adaptively adjusts the closed-loop feedback gain based on fuzzy rules to further reduce the fatigue load of blade root and tower while ensuring the output power of wind turbine and the stability of floating platform.Co-simulation is executed based on FAST and Matlab/Simulink to verify the effectiveness and superiority of the proposed scheme under different environmental conditions.The time and frequency domain analysis show that the proposed scheme has a significant improvement in reducing the out-of-plane load at the blade root and the lateral load at the tower base compared with PI control.
作者 韩耀振 刘爽 杨文祥 侯明冬 Han Yaozhen;Liu Shuang;Yang Wenxiang;Hou Mingdong(School of Information Science and Electrical Engineering,Shandong Jiaotong University,Ji’nan 250357,China)
出处 《太阳能学报》 EI CAS CSCD 北大核心 2024年第1期188-196,共9页 Acta Energiae Solaris Sinica
基金 国家自然科学基金(61803230) 山东省高等学校青创科技支持计划(2019KJN023)。
关键词 海上风力机 载荷 最优控制系统 模糊LQR offshore wind turbines loads optimal control systems fuzzy LQR
  • 相关文献

参考文献4

二级参考文献39

  • 1Battista H, Mantz R J. Wind turbine control systems principles, modeling and gain scheduling design[M]. London: Springer-Vorlay, 2007.
  • 2Bossanyi E A. The design of closed loop controller for wind turbines[J]. Wind Energy, 2001, 3(3): 149- 163.
  • 3Laks J H, Pao L Y, Wright A D. Control of wind turbines: past, present, and future[A]. American Control Conference[C]. St. Louis, MO, USA, 2009, 2096-2103.
  • 4Doff R C, Bishop R H. Modem control system[M]. Singapore: Pearson Education Inc, 2008, 281-295.
  • 5Mika R. Torque and speed control of a pitch regulated wind turbine [R]. Sweden: Department of Electric Power Engineering, 2003.
  • 6Hansen M, Hansen A, Fuglsang P. et al. Control design for a pitch-regulated, variable speed wind turbine[R]. Denmark : Riso National Laboratory, 2005.
  • 7Ekelund T. Modeling and linear quadratic optimal control of wind turbines[D]. Sweden: Chalmers University of Technology, 1997.
  • 8Munteanu. I, Cutululis N A, Bratcu A I, et al.Optimization of variable speed wind power systems based on a LQG approach[J]. Control Engineering Practice, 2005, 15: 905-912.
  • 9Boukhezzar B, Siguerdidjane H. Comparison between linear and non-linear control strategies for variable speed wind turbines [J]. Control Engineering Practice,2010, 18: 1357-1368.
  • 10Yao Xingjia, Guo Changchun, Xing Zuoxia, et al. Pitch regulated LQG controller design for variable speed wind turbine [A]. International Conference on Mechatronics and Automation[C], ICMA 2009, IEEE, 2009, 845- 849.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部