期刊文献+

一种改进的GM-C-CPHD空间多目标跟踪算法

An Improved GM-C-CPHD Algorithm for Spatial Multi-Target Tracking
下载PDF
导出
摘要 随着空间目标的数目急剧上升,提高空间多目标跟踪精度成为必然要求,但空间多目标跟踪存在轨道动力学模型不完善的问题。针对该问题,提出一种改进的高斯混合势概率假设密度滤波(GM-C-CPHD)算法。通过在轨道动力学模型中考虑一个不确定性模型参数,即面质比参数(AMR),基于协方差传递面质比参数对位置、速度状态估计的影响,提高空间目标跟踪精度。仿真分析表明:相对于GM-CPHD滤波器,目标数量的跟踪和状态估计性能均有所提高,具有良好的应用前景。 With the rapid increase in the number of spatial targets,it is necessary to improve the accuracy of spatial multitarget tracking(MTT) However,the existing orbital dynamics model for MTT is imperfect To solve this problem,an improved Gaussian-mixture considering cardinalized probability hypothesis density(GM-C-CPHD) algorithm is proposed By considering an uncertain model parameter,i e,the area-to-mass ratio(AMR),in the orbital dynamics model,the influence of the AMR parameter on the estimation of position and velocity vector is considered based on covariance,with which the tracking accuracy of spatial targets is improved The simulation results demonstrate that the performance of the target number and state estimation is improved compared with the Gaussian-mixture cardinalized probability hypothesis density(GMCPHD) filter,which shows that the proposed algorithm has a good application prospect.
作者 谢贝旭 张艳 陈金涛 张任莉 XIE Beixu;ZHANG Yan;CHEN Jintao;ZHANG Renli(School of Aeronautics and Astronautics,Sun Yat-Sen University,Shenzhen 518060,Guangdong,China)
出处 《上海航天(中英文)》 CSCD 2024年第1期89-96,共8页 Aerospace Shanghai(Chinese&English)
基金 深圳市空间态势感知基础理论与应用技术研究项目(76150 42100003)。
关键词 空间多目标跟踪 高斯混合 势概率假设密度滤波 不确定性参数 面质比(AMR) spatial multi-target tracking Gaussian mixture cardinalized probability hypothesis density(CPHD)filter uncertain parameter area-to-mass ratio(AMR)
  • 相关文献

参考文献8

二级参考文献61

共引文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部