期刊文献+

基于特征挖掘的时间序列异常检测算法

Time series anomaly detection algorithm based on feature mining
下载PDF
导出
摘要 为了有效地挖掘监控指标时间序列的周期性特征和节假日效应,本文提出了一种基于特征挖掘的时间序列异常检测集成算法。通过FFT算法检测序列的周期性特征,以及MODWT算法识别非周期序列的局部波动特征,以天为单位计算不同子序列的CSBD值,作为OPTICS聚类算法的距离半径,进而识别序列的节假日特征,并基于Holt-Winters算法所得的预测误差,构建余弦加形变量波动指标,以降低序列的时间、形状和量级等其余特征对异常点检测的影响。经过实际业务的应用验证,本文算法相对传统的算法准确率得到显著提升,且可以保持良好的稳健性。 We propose an integration algorithm for time series anomaly detection based on feature mining in order to effectively explore the cycle characteristics and holiday effects of the time series of monitoring indicators.Specifi cally,the FFT algorithm is utilized to detect the features of periodic sequences,and the local fl uctuation features of non-periodic ones are identified by MODWT algorithm.Afterwards the CSBD of different subsequences are computed in daily frequency as the distance radius of the OPTICS clustering algorithm to extract holiday features of the tested sequences.Based on the prediction error obtained by the Holt Winters algorithm,a volatility index measured by cosine plus shape variables is constructed to reduce the impact of other features such as time position,shape,and magnitude of the sequence on anomaly detection.The application of the proposed algorithm in practice convincingly verifi es its signifi cant accuracy as well as good robustness compared to traditional algorithms.
作者 叶展博 YE Zhan-bo(China Mobile Information Technology Co.,Ltd.,Shenzhen 518048,China)
出处 《电信工程技术与标准化》 2024年第2期36-41,71,共7页 Telecom Engineering Technics and Standardization
关键词 特征挖掘 异常检测 周期特征 节假日效应 feature mining abnormal detection periodic characteristics holiday eff ect
  • 相关文献

参考文献5

二级参考文献42

  • 1陈明凯,郑翔骥,汪晓强.减少频谱泄漏的一种新的等角度间隔采样递推算法[J].电工技术学报,2005,20(8):94-98. 被引量:13
  • 2程佩青.数字信号处理[M].第三版.北京:清华大学出版社,2007:98-195.
  • 3OPPENHEIM A V, SCHAFER R W, BUCK J R. Discrete-time Signal Processing [ M ]. Second edition. Prentice-Hall, 1999.
  • 4SMITH D C, NELSON D J. Detection and resolution of narrow band signal components by concentrating the DFT [ C ]//5th International Workshop on Information Optics (WIO'06). AIP Conference Proceedings, Vol 860. Toledo, Spain: WIO, 2006: 200-209.
  • 5LYONSRG.数字信号处理[M].第二版.朱光明,程建远,刘保童,等,译.北京:机械工业出版社,2006:46-56.
  • 6中华人民共和国国家经济贸易委员.DL/T722-2000变压器油中溶解气体分析和判断导则[s].北京:中国电力出版社,2001.
  • 7邹建明.在线监测技术在电网中的应用[J].高电压技术,2007,33(8):203-206. 被引量:94
  • 8徐士良.FORTRAN常用算法程序集[M].北京:清华大学出版社,1995..
  • 9Vladimiro M, Adriana R G C, Shigeaki L. Diagnosing faults in power transformers with autoassociative neural networks and mean shift[J]. IEEE Transactions on Power Delivery, 2012, 27(3): 1350-1357.
  • 10Luo Gang, Shi Dongyuan, Chen Jinfu. Automatic indentification of transmission sections based on complex network theory[J]. IET Generation Transmission & Distribution, 2013, 8(7): 1203-1210.

共引文献397

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部