期刊文献+

基于动态图注意力的风电场组合预测模型

Wind Farm Combination Forecasting Model Based on Dynamic Graph Attention
下载PDF
导出
摘要 为了实现风电场用能管理的高效调度,充分提取多站点间时空特征的潜在联系,提出一种基于动态图卷积和图注意力的多站点短期风电功率时空组合预测模型。使用图卷积实现多站点间时序特征的邻居聚合,并使用图注意力机制加强其对空间特征的提取能力。同时,针对传统模型无法处理图节点关联性实时变化的问题,先在图卷积过程中依据站点间的相关系数和距离动态构建邻接矩阵,再使用门控循环单元处理动态图卷积输出的上下文信息,最后完成风电功率预测。实验结果表明,所提出的组合模型在预测精度、稳定性和多步预测性能方面均最优。 In order to realize efficient scheduling of wind farm energy use management and fully extract the potential relationship between spa⁃tial and temporal characteristics of multiple sites,a multi-site short-term wind power spatio-temporal combination prediction model based on dynamic graph convolution and graph attention is proposed.Firstly,graph convolution is used to realize neighbor aggregation of temporal fea⁃tures among multiple sites,and graph attention mechanism is used to enhance its ability to extract spatial features.At the same time,in view of the problem that the traditional model cannot handle the real-time changes of the graph node correlation,firstly,the adjacency matrix is dy⁃namically constructed according to the correlation coefficient and distance between the sites during the graph convolution process;secondly,the gated cycle unit is used to process the context information of the output of the dynamic graph convolution;finally,the wind power predic⁃tion is completed.The experimental results show that the proposed combined model is optimal in terms of prediction accuracy,stability and multi-step prediction performance.
作者 廖雪超 程轶群 LIAO Xuechao;CHENG Yiqun(School of Computer Science and Technology,Wuhan University of Science and Technology;Key Laboratory of Intelligent Information Processing and Real-time Industrial Systems,Wuhan 430065,China)
出处 《软件导刊》 2024年第2期9-16,共8页 Software Guide
基金 国家自然科学基金项目(62273264)。
关键词 短期风电预测 动态相关性 图卷积神经网络 注意力机制 门控循环单元 short-term wind power forecast dynamic correlation graph convolution neural network attentional mechanism gated recur⁃rent unit
  • 相关文献

参考文献8

二级参考文献167

  • 1冯丽,邱家驹.离群数据挖掘及其在电力负荷预测中的应用[J].电力系统自动化,2004,28(11):41-44. 被引量:11
  • 2郭金,曹福成,杨尚东.基于Shapley值的组合预测方法[J].华东电力,2005,33(2):7-10. 被引量:11
  • 3杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:584
  • 4姚李孝,刘学琴.基于小波分析的月度负荷组合预测[J].电网技术,2007,31(19):65-68. 被引量:41
  • 5新华网.新华社受权发布中共中央关于制定十三五规划建议[EB/OL]. [2016-01-02]. http://news.xinhuanet.com/finance/2015-11/ 03/c_1117025413.html.
  • 6GWEC. Global wind power statistics 2015[R]. Brussels, Belgium: Global Wind Energy Council, 2016: 1-4.
  • 7Lujano-Rojas J M, Osório G J, Matias J C O, et al . A heuristic methodology to economic dispatch problem incorporating renewable power forecasting error and system reliability[J]. Renewable Energy, 2016, 87(3): 731-743.
  • 8Kou P, Gao F, Guan X. Stochastic predictive control of battery energy storage for wind farm dispatching: using probabilistic wind power forecasts[J]. Renewable Energy, 2015, 80(8): 286-300.
  • 9陈妮亚. 短期风电功率预测方法研究[D]. 北京:北京航空航天大学,2014.
  • 10Foley A M, Leahy P G, Marvuglia A, et al . Current methods and advances in forecasting of wind power generation[J]. Renewable Energy, 2012,37(1):1-8.

共引文献2163

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部