期刊文献+

Twin-solute, twin-dislocation and twin-twin interactions in magnesium

下载PDF
导出
摘要 Magnesium alloys have received considerable research interest due to their lightweight,high specific strength and excellent castability.However,their plastic deformation is more complicated compared to cubic materials,primarily because their low-symmetry hexagonal closepacked(hcp) crystal structure.Deformation twinning is a crucial plastic deformation mechanism in magnesium,and twins can affect the evolution of microstructure by interacting with other lattice defects,thereby affecting the mechanical properties.This paper provides a review of the interactions between deformation twins and lattice defects,such as solute atoms,dislocations and twins,in magnesium and its alloys.This review starts with interactions between twin boundaries and substitutional solutes like yttrium,zinc,silver,as well as interstitial solutes like hydrogen and oxygen.This is followed by twin-dislocation interactions,which mainly involve those between {10■2} tension or {10■1} compression twins and , or type dislocations.The following section examines twin-twin interactions,which occur either among the six variants of the same {10■2} or {10■1} twin,or between different types of twins.The resulting structures,including twin-twin junctions or boundaries,tension-tension double twin,and compression-tension double twin,are discussed in detail.Lastly,this review highlights the remaining research issues concerning the interactions between twins and lattice defects in magnesium,and provides suggestions for future work in this area.
出处 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第10期3427-3462,共36页 镁合金学报(英文)
基金 support from the Australian Research Council (DP200102985 and DP180100048) supported by computational resources provided by the Australian Government through National Computational Infrastructure (Raijin) and Pawsey supercomputing centre (Magnus) under the National Computational Merit Allocation Scheme (NCMAS)。
  • 相关文献

参考文献4

二级参考文献4

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部