期刊文献+

Understanding the corrosion of Mg alloys in in vitro urinary tract conditions: A step forward towards a biodegradable metallic ureteral stent

下载PDF
导出
摘要 Ureteral stents play a fundamental role in modern time urology. However, following the deployment, stent-related symptoms are frequent and affect patient health and quality of life. Using biodegradable metals as ureteral stent materials have emerged as a promising strategy, mainly due to the improved radial force and slower degradation rate expected. Therefore, this study aimed to characterize different biodegradable metals in urinary tract environment to understand their propensity for future utilization as base materials for ureteral stents. The corrosion of 5 Mg alloys - AZ31, Mg-1Zn, Mg-1Y, pure Mg, and Mg-4Ag - under simulated urinary tract conditions was accessed. The corrosion layer of the different alloys presented common elements, such as Mg(OH)_(2), MgO, and phosphate-containing products, but slight variations in their chemical compositions were detected. The corrosion rate of the different metals varied, which was expected given the differences in the corrosion layers. On top of this, the findings of this study highlighted the significant differences in the samples' corrosion and corrosion layers when in stagnant and flowing conditions. With the results of this study, we concluded that Mg-1Zn and Mg-4Ag presented a higher propensity for localized corrosion, probably due to a less protective corrosion layer;Mg-4Ag corroded faster than all the other four alloys,and Mg-1Y stood out due to its distinct corrosion pattern, that showed to be more homogeneous than all the other four samples, making this one more attractive for the future studies on biodegradable metals.
出处 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第11期4301-4324,共24页 镁合金学报(英文)
基金 funding from Foundation for Science and Technology (FCT),through project NORTE01-0247-FEDER-047112 the Ph D scholarship SFRH/BD/145285/2019 the financial support by the Portuguese FCT through the postdoctoral contract with reference number CEECIND/01026/2018 the DAAD-FCT project ID: 57665092 for the financial support。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部