期刊文献+

A combined experimental and crystal plasticity study of grain size effects in magnesium alloys

下载PDF
导出
摘要 This work presents a method to incorporate the micro Hall-Petch equation into the crystal plasticity finite element(CPFE) framework accounting for the microstructural features to understand the coupling between grain size, texture, and loading direction in magnesium alloys.The effect of grain size and texture is accounted for by modifying the slip resistances of individual basal and prismatic systems based on the micro Hall-Petch equation. The modification based on the micro Hall-Petch equation endows every slip system at each microstructural point with a slip system-level grain size and maximum compatibility factor, which are in turn used to modify the slip resistance. While the slip-system level grain size is a measure of the grain size, the maximum compatibility factor encodes the effect of the grain boundary on the slip system resistance modification and is computed based on the Luster-Morris factor. The model is calibrated using experimental stress-strain curves of Mg-4Al samples with three different grain sizes from which the Hall-Petch coefficients are extracted and compared with Hall-Petch coefficients predicted using original parameters from previous work. The predictability of the model is then evaluated for a Mg-4Al sample with different texture and three grain sizes subjected to loading in different directions. The calibrated parameters are then used for some parametric studies to investigate the variation of Hall-Petch slope for different degrees of simulated spread in basal texture,variation of Hall-Petch slope with loading direction relative to basal poles for a microstructure with strong basal texture, and variation of yield strength with change in grain morphology. The proposed approach to incorporate the micro Hall-Petch equation into the CPFE framework provides a foundation to quantitatively model more complicated scenarios of coupling between grain size, texture and loading direction in the plasticity of Mg alloys.
出处 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第12期4445-4467,共23页 镁合金学报(英文)
基金 supported by the U.S.Department of Energy,Office of Basic Energy Sciences,Division of Materials Sciences and Engineering under Award #DE-SC0008637 as part of the Center for PRedictive Integrated Materials Science (PRISMS Center) at the University of Michigan supported by National Science Foundation grant number ACI1548562,through the allocation TG-MSS160003。
  • 相关文献

参考文献1

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部