期刊文献+

Chilling stress drives organ-specific transcriptional cascades and dampens diurnal oscillation in tomato

下载PDF
导出
摘要 Improving chilling tolerance in cold-sensitive crops,e.g.tomato,requires knowledge of the early molecular response to low temperature in these under-studied species.To elucidate early responding processes and regulators,we captured the transcriptional response at 30 minutes and 3 hours in the shoots and at 3 hours in the roots of tomato post-chilling from 24℃ to 4℃.We used a pre-treatment control and a concurrent ambient temperature control to reveal that majority of the differential expression between cold and ambient conditions is due to severely compressed oscillation of a large set of diurnally regulated genes in both the shoots and roots.This compression happens within 30 minutes of chilling,lasts for the duration of cold treatment,and is relieved within 3 hours of return to ambient temperatures.Our study also shows that the canonical ICE1/CAMTA-to-CBF cold response pathway is active in the shoots,but not in the roots.Chilling stress induces synthesis of known cryoprotectants(trehalose and polyamines),in a CBF-independent manner,and induction of multiple genes encoding proteins of photosystems I and II.This study provides nuanced insights into the organ-specific response in a chilling sensitive plant,as well as the genes influenced by an interaction of chilling response and the circadian clock.
出处 《Horticulture Research》 SCIE CSCD 2023年第8期241-253,共13页 园艺研究(英文)
  • 相关文献

参考文献3

二级参考文献45

  • 1Albini FM, Murelli C, Patritti G, Rovati M, Zienna P, Vita Finzi P (1994). Low-molecular weight substances from the resurrection plant Sporobolus stapfianus. Phytochemistry 37, 137-142.
  • 2Avonce N, Leyman B, Mascorro-Gallardo JO, Van Dijck P, Thevelein JM, Iturriaga G (2004). The Arabidopsis trehalose-6-P synthase AtTPS1 gene is a regulator of glucose, abscisic acid, and stress signaling. Plant Physiol. 136, 3649-3659.
  • 3Bae HH, Herman E, Bailey B, Bae H J, Sicher R (2005). Exogenous trehalose alters Arabidopsis transcripts involved in cell wall modification, abiotic stress, nitrogen metabolism, and plant defense. Physiol. Plant. 125, 114-126.
  • 4Bell W, Sun W, Hohmann S, Wera S, Reinders A, De Virgilio C et al. (1998). Composition and functional analysis of the Saccharomyces cerevisiae trehalose synthase complex. J. Biol. Chem. 272, 33311- 33319.
  • 5Bianchi G, Gamba A, Limiroli R, Pozzi N, Elster R, Salamini F et al. (1993). The unusual sugar composition in leaves of the resurrection plant Myrothamnus flabellifolia. Physiol. Plant. 87, 223-226.
  • 6Blazquez MA, Santos E, Flores CL, Martinez-Zapatar JM, Salinas J, Gancedo C (1998). Isolation and molecular characterization of the Arabidopsis TPS1 gene, encoding trehalose-6-phosphate synthase. Plant J. 13. 685-689.
  • 7Chary SN, Hicks GR, Choi YG, Carter D, Raikhel NV (2008). Trehalose-6-phosphate synthase/phosphatase regulates cell shape and plant architecture in Arabidopsis. Plant Physiol. 146, 97- 107.
  • 8Cortina C, Culianez-Macia FA (2005). Tomato abiotic stress enhanced tolerance by trehalose biosynthesis. Plant Sci. 169, 75-82.
  • 9Crowe JH, Crowe LM, Chapman D (1984). Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 223, 701- 703.
  • 10Drennan PM, Smith MT, Goldsworthy D, Van Staden (1993). The occurrence of trehalose in the leaves of the desiccation-tolerant angiosperm Myrothamnus flabellifolius Welw, Plant Physiol. 142, 493-496.

共引文献130

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部