摘要
为了提高未知弹道参数下的多级弹道导弹主动段目标跟踪精度和鲁棒性,提出了一种目标状态/参数联合估计算法。首先对多级弹道导弹主动段运动进行建模和动力学特性分析;然后在重力转弯目标跟踪模型(GT1)基础上进行改进,得到三维重力转弯目标跟踪模型(GT3),并与容积卡尔曼滤波(CKF)算法结合,设计了多级弹道导弹目标主动段状态/参数联合估计算法;在此基础上给出一种多级弹道导弹目标机动飞行模式,最后分别在常瞄准攻角飞行和机动飞行条件下完成仿真验证。GT3算法对导弹主动段三轴机动比较敏感,克服了GT1算法无法准确描述主动段运动的缺陷,算法精度、鲁棒性有所提升。GT3对瞄准攻角不为零的多级助推弹道导弹主动段跟踪表现出明显优势,且对级间切换具有一定的识别能力。
In order to improve the accuracy and robustness of target tracking in the active segment of multi-stage ballistic missiles under unknown ballistic parameters,a joint target state/parameter estimation algorithm is proposed.Firstly,the active segment motion of multi-stage ballistic missiles is modeled and the dynamic characteristics are analyzed.Then,on the basis of One-dimensional Gravity Turning target tracking model(GT1),the Three-dimensional Gravity Turning target tracking model(GT3) is obtained,and combined with the Cubature Kalman filter(CKF) algorithm,a multi-stage ballistic missile target active segment state/parameter joint estimation algorithm is designed.On this basis,a multi-stage ballistic missile target maneuvering flight mode is given,and finally the simulation verification is completed under the conditions of constant aiming angle of attack flight and maneuvering flight.The GT3 algorithm is sensitive to the three-axis maneuver of the active segment of the missile,which overcomes the defect that the GT1algorithm cannot accurately describe the motion of the active segment,and improves the accuracy and robustness.GT3shows obvious advantages in active segment tracking of multi-stage booster ballistic missiles with aiming angle of attack of non-zero,and has certain recognition capabilities for interstage switching.
作者
刘丽丽
穆荣军
崔乃刚
LIU Lili;MU Rongjun;CUI Naigang(School of Astronautics,Harbin Institute of Technology,Harbin 150001,China)
出处
《宇航学报》
EI
CAS
CSCD
北大核心
2023年第12期1839-1849,共11页
Journal of Astronautics
基金
上海航天科技创新基金(SAST2021-024)
载人航天四批预研项目(060201)。
关键词
弹道导弹
主动段
机动目标跟踪
三维重力转弯模型
状态/参数联合估计
Ballistic missiles
Active segment
Maneuvering target tracking
Three-dimensional gravity turn model
State/parameter joint estimation