期刊文献+

花粉授粉机制在改进粒子群算法研究

Research on Pollen Pollination Mechanism Employed in Improved Particle Swarm Optimization
下载PDF
导出
摘要 针对柔性作业中多目标优化问题,首先构建多目标任务满意度数学模型,该模型以最小加工时间、最低制造成本和最短运输时间为目标,去量纲操作后利用几何平均法求解综合满意度评价值。然后,提出一种改进的粒子群算法(LFPSO),该算法为平衡算法全局和局部搜索能力,惯性权重采用幂函数自适应调节,为改变粒子群前期的搜索性能,在惯性权重中加入了Logistic混沌映射丰富粒子多样性,为平衡全局搜索能力与局部搜索能力,引入花粉授粉机制作为全局搜索阈值。最后,将LFPSO算法与其他算法进行仿真对比,结果验证了LFPSO算法具有良好的性能及解决柔性作业多目标优化问题的有效性。 Aiming at the multi-objective optimization problem in flexible operations,a multi objective task satisfaction mathematical model is first constructed.The model takes the minimum machining time,the lowest manufacturing cost and the shortest transportation time as its objectives,and uses the geometric average method to solve the comprehensive satisfaction evaluation value after dedimensional operation.Secondly,an improved Logistic chaotic map and flower pollination mechanism employed in particle swarm optimization(LFPSO)is proposed.The inertia weight of the algorithm adopts power function adaptive adjustment to balance global search ability and local search ability.In order to increase the search performance of particle swarm in the early stage,Logistic chaos mapping is added to the inertia weight to enrich particle diversity.In order to balance global search ability and local search ability,pollen pollination mechanism is introduced as the global search threshold.Finally,the LFPSO algorithm is simulated and compared with the other three algorithms,and the results verify that the LFPSO algorithm has good performance and the effectiveness of solving the multi-objective optimization problem of flexible operation.
作者 曲鹏举 何雪 QU Pengju;HE Xue(Engineering Training Centre,Guizhou Institute of Technology,Guiyang 550025,China)
出处 《机械与电子》 2024年第2期15-21,共7页 Machinery & Electronics
基金 贵州省教育厅青年科技人才成长项目(黔教合KY字[2018]243) 贵州省教育厅青年科技人才成长项目(黔教技[2022]274号)。
关键词 粒子群算法 满意度评价值 LOGISTIC混沌映射 花粉授粉阈值 惯性权重幂函数 particle swarm optimization satisfaction evaluation value Logistic chaos mapping pollination threshold inertial weight power function
  • 相关文献

参考文献11

二级参考文献83

  • 1张斯琪,倪静.混合鲸鱼算法在柔性作业车间系统中的应用[J].系统科学学报,2020,28(1):131-136. 被引量:14
  • 2王勇亮,王挺,姚辰.基于Kent映射和自适应权重的灰狼优化算法[J].计算机应用研究,2020,37(S02):37-40. 被引量:9
  • 3曾建敏.实验检验累积前景理论[J].暨南大学学报(自然科学与医学版),2007,28(1):44-47. 被引量:58
  • 4宋晓江,卢俊宇,隋明磊.基于免疫蚁群算法的Job-shop调度问题[J].计算机应用,2007,27(5):1183-1186. 被引量:10
  • 5Moradi E,Ghomi S M T F,Zandieh M.Bi-objective optimization research on integrated fixed time interval preventive maintenance and production for scheduling flexible job-shop problem[J].Expert Systems with Applications,2011,38(6):7169-7178.
  • 6Zhang R,Song S J,Wu C.A two-stage hybrid particle swarm optimization algorithm for the stochastic job shop scheduling problem[J].Knowledge-Based Systems,2012,27:393-406.
  • 7Zhao F Q,Tang J X,Wang J B,et al.An improved particle swarm optimization with decline disturbance index(DDPSO)for multi-objective job-shop scheduling problem[J].Computers&Operations Research,2014,45:38-50.
  • 8Kacem I,Hammadi S,Borne P.Pareto-optimality approach for flexible job-shop scheduling problems:Hybridization of evolutionary algorithms and fuzzy logic[J].Mathematics and Computers in Simulation,2002,60:245-276.
  • 9Kacem I,Hammadi S,Borne P.Approach by localization and multi-objective evolutionary optimization for flexible Job-Shop scheduling problems[J].IEEE Transactions on Systems,Man and Cybernetics:Part C,2002,32(1):408-419.
  • 10Zhang G H,Shao X Y,Li P G,et al.An effective hybrid particle swarm optimization algorithm for multi-objective flexible Job-Shop scheduling problems[J].Computers and Industrial Engineering,2009,56(4):1309-1318.

共引文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部