期刊文献+

结构状态识别与评估的机器学习方法研究进展 被引量:1

Research advances in machine learning for structural state identification and condition assessment
下载PDF
导出
摘要 结构健康监测通过在大型工程结构上安装多类型传感器,感知、采集、传输和处理多元数据,已经成为保障重大工程结构安全的重要手段.随着结构健康监测系统的广泛应用,产生了海量的监测数据,如何通过监测数据识别和评估结构状态与安全是核心科学问题之一.由于土木工程结构的复杂性,状态识别与评估的核心难点是高维问题优化与求解,机器学习在高维问题求解方面具有很强的能力,为该问题的解决提供了新的思路.本文重点阐述机器学习在结构模态识别、损伤识别及可靠性评估等方面的研究进展,并讨论未来在该研究方向的发展趋势. Structural health monitoring(SHM)has become an important technique to ensure the safety of major engineering structures by sensing,collecting,transmitting and processing multivariate data,through the installation of multiple types of sensors on large engineering structures.With the wide application of SHM system,a huge amount of monitoring data is generated,and how to identify and evaluate the structural condition and safety through monitoring data is one of the core scientific problems.Due to the complexity of civil engineering structures,the core difficulty of state identification and assessment is the optimization and solution of high-dimensional problems.Machine learning has a strong capability in solving high-dimensional problems,providing new ideas for the solution of this problem.This paper focuses on the research progress of machine learning in structural modal identification,damage identification and reliability assessment,and discusses the future development trend in these research directions.
作者 黄永 鲍跃全 李惠 HUANG Yong;BAO Yuequan;LI Hui(School of Civil Engineering,Harbin Institute of Technology,Harbin 150090,China)
出处 《力学进展》 EI CSCD 北大核心 2023年第4期774-792,共19页 Advances in Mechanics
基金 国家自然科学基金(51921006,51978216,U2139209,52192664)资助项目。
关键词 结构损伤识别 模态识别 安全评定 机器学习 结构健康监测 structural health monitoring modal identification damage identification reliability evaluation machine learning
  • 相关文献

参考文献4

二级参考文献27

  • 1张兢,路彦和.基于小波包频带能量检测技术的故障诊断[J].微计算机信息,2006,22(02S):202-204. 被引量:24
  • 2Ou Jinping,Li Hui.Structural health monitoring in China's Mainland:Review and future trends[J].Structural Health Monitoring-An International Journal,2010,9(3):219―231.
  • 3Emmanuel J.Candès,Justin Romberg,Terence Tao.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information Theory,2006,52(2):489―509.
  • 4Emmanuel J.Candès.Compressive sampling.[C].Proceedings of the International Congress of Mathematicians.Madrid,Spain,2006:1433―1452.
  • 5David L Donoho.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289―1306.
  • 6Bao Yuequan,James L Beck,Li Hui.Compressive sampling for accelerometer signals in structural health monitoring[J].Structural Health Monitoring-An International Journal,2011,10(3):235―246.
  • 7Bao Yuequan,Li Hui,Ou Jinping.Emerging data technology in structural health monitoring:Compressive sensing technology[J].Journal of Civil Structural Health Monitoring,2014,4(2):77―90.
  • 8Bao Yuequan,Li Hui,Sun Xiaodan,Yan Yu,Ou Jinping.A data loss recovery approach for wireless sensor networks using a compressive sampling technique[J].Structural Health Monitoring-An International Journal,2013,12(1):78―95.
  • 9Bao Yuequan,Zou Zhilong,Li Hui.Compressive sensing based wireless sensor for structural health monitoring[C].San Diego,California USA:SPIE Smart Structures/NDE,March 12-15,2014:90611W-1-10.
  • 10Bao Yuequan,Yan Yu,Li Hui,Mao Xingquan,Jiao Wenfeng,Zou Zilong,Ou Jinping.Compressive sensingbased lost data recovery of fast-moving wireless sensing for structural health monitoring[J].Structural Control and Health Monitoring,2014,22:433―448.

共引文献323

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部