期刊文献+

基于K-AHNs的轮毂电机状态识别方法研究

Condition Recognition Method Based on K-AHNs for In-wheel Motor
原文传递
导出
摘要 为规避轮毂电机故障恶化诱发电动汽车运行安全隐患,提出一种基于K-means聚类算法的改进人工碳氢网络(K-means based artificial hydrocarbon networks,K-AHNs)的轮毂电机状态识别新方法,主要通过K-means聚类算法思想改进人工碳氢网络(Artificial hydrocarbon networks,AHNs)碳氢分子区间的更新方式,优化多种状态识别模型,进而达到提高识别精度、降低训练时间的目的。基于轮毂电机内侧滚动轴承内圈、外圈和滚动体3种不同故障状态在4种负载和7种运行状态下的试验数据验证结果表明,K-AHNs法在多种运行工况下能够精准、高效地识别轮毂电机运行状态,状态识别率均大于87%,训练时间均低于19 s。比较传统的AHNs法,K-AHNs法的平均状态识别率提高了14.49%,平均训练时间缩短了7.36倍,具有较高的可靠性和实用性,较好地解决现有的电机故障诊断方法识别精度低、模型训练时间长的问题。 To avoid the potential safety hazards of electric vehicle caused by fault deterioration of in-wheel motor,a condition recognition method based on artificial hydrocarbon networks with K-means clustering algorithm(K-AHNs)is proposed.Based on the K-means clustering algorithm,the traditional updating method is improved to optimize the molecular interval and multiple condition recognition models of artificial hydrocarbon networks(AHNs),then the fault recognition accuracy is improved and the training time is significantly reduced.The experimental data of 3 bearing faults such as inner-ring fault,outer-ring fault and rolling element fault of in-wheel motor with 4 kinds of roads in 7 running conditions are used to verify the performance of the proposed method.Each condition recognition accuracy of the proposed method is greater than 87%,and each training time is less than 19 seconds.Comparing the traditional AHNs,the average recognition accuracy based on K-AHNs is increased by 14.49%,and the average training time is 5 times shorter.It has been proved that K-AHNs not only improves the condition recognition accuracy,but also reduces the training time,then K-AHNs has better reliability and practicability,which solves some problems of the existing fault diagnosis of in-wheel motor,such as low recognition accuracy and long training time.
作者 薛红涛 吴蒙 张子鸣 周宏月 王华庆 XUE Hongtao;WU Meng;ZHANG Ziming;ZHOU Hongyue;WANG Huaqing(School of Automobile and Traffic Engineering,Jiangsu University,Zhenjiang 212013;College of Mechanical and Electrical Engineering,Beijing University of Chemical Technology,Beijing 100029)
出处 《机械工程学报》 EI CAS CSCD 北大核心 2023年第22期207-214,共8页 Journal of Mechanical Engineering
基金 国家自然科学基金资助项目(51775245)。
关键词 轮毂电机 人工碳氢网络 K-MEANS聚类 状态识别 运行状态 in-wheel motor artificial hydrocarbon networks K-means clustering condition recognition running condition
  • 相关文献

参考文献9

二级参考文献52

  • 1王志,艾延廷,沙云东.基于BP神经网络的航空发动机整机振动故障诊断技术研究[J].仪器仪表学报,2007,28(S1):168-171. 被引量:38
  • 2庄哲民,肖广辉,曹勤.基于遗传神经网络的异步电动机故障诊断研究[J].测试技术学报,2004,18(4):377-380. 被引量:10
  • 3魏秀业,潘宏侠,马清峰.粒子群优化的神经网络在故障诊断中的应用[J].振动.测试与诊断,2006,26(2):133-137. 被引量:12
  • 4LIANG S Y, HECKER R L, LANDERS R G. Machining process monitoring and control: The state-of-the-art[J]. Journal of Manufacturing Science and Engineering, 2004, 5(12): 297-310.
  • 5JEONG Y H, CHO D W. Estimating cutting force from rotating and stationary feed motor currents on a milling machine[J]. International Journal of Machine Tools & Manufacture, 2002, 2:1 559-1 566.
  • 6KIM G D, CHU C N. Indirect cutting force measurement considering frictional behavior in a machining centre using feed motor current[J]. Int. J. Adv. Manuf. Techno., 1999, 15: 478-484.
  • 7LI Xiao. Current-sensor-based feed cutting force intelligent estimation and tool wear condition monitoring [J]. IEEE Transaction on Industrial Electronics, 2000, 47(3): 697-702.
  • 8LOPEZ De Lacalle L N, LAMIKIZ A, SANCHEZ J A, et at. Recording of real cutting forces along the milling of complex parts[J]. Fernandez de Bustos Mechatronics, 2006,16: 21-32.
  • 9KIM M S, CHUNG S C. A systematic approach to design high-performance feed drive systems[J]. International Journal of Machine Tools & Manufacture, 2005, 45: 1 421-1 435.
  • 10ALTINTAS Y. Manufacturing automation: Metal cutting mechanics, machine tool vibrations, and CNC design[M]. Cambridge: Cambridge University Press, 2000.

共引文献146

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部