期刊文献+

多光子跃迁下Rabi模型的量子相变

Quantum Phase Transition in Rabi Model under Multiple-Photon Transition
原文传递
导出
摘要 Rabi模型一直是近年来研究的热点,本文研究该模型在多光子跃迁下的量子相变及多稳态。通过自旋相干态变分法等效的赝自旋哈密顿量被对角化并解得了系统的能量泛函表达式,同时根据变分结果求得光子数解的情形和临界值,最后给出基于光子数解和系统稳定性相图。本文主要给出了单光子、两光子和多光子跃迁对Rabi模型量子态、多稳性和量子相变的影响。该结果有助于实验上通过调控腔频来诱导有趣的量子相变。 Rabi model has been a hot topic in recent years.In this paper,quantum phase transitions and multistable states in Rabi model are presented under multiple-photon transition.By means of spin-coherent-state variational method,the equivalent pseudospin Hamiltonian is diagonalized and the energy functional is obtained.Then according to the results of the variational method,the photon number solutions and the critical values are given.Finally,phase diagrams are plotted based on the photon number solutions and the stabilities.The main results are what effects do the numbers of transitions photons have on quantum states,multistability and quantum phase transitions in Rabi model.The results are helpful to induce interesting quantum phase transition by modulating the frequency of the optical cavity.
作者 刘妮 包睿 刘凯 黄珊 梁九卿 LIU Ni;BAO Rui;LIU Kai;HUANG Shan;LIANG Jiu-qing(Institute of Theoretical Physics,State Key Laboratory of Quantum Optics and Quantum Optics Devices,Collaborative Innovation Center of Extreme Optics,Shanxi University,Taiyuan 030006,China;Middle school of Qinxian,Qinxian 046400,China)
出处 《量子光学学报》 北大核心 2023年第4期1-10,共10页 Journal of Quantum Optics
基金 国家自然科学基金(12374312,12147215) 山西省高等学校科技创新项目(2019L0069) 山西省回国留学人员科研教研资助项目(2022-014,2023-033)。
关键词 Rabi模型 多光子跃迁 量子相变 自旋相干态变分法 能量泛函 Rabi model multiple-photon transition quantum phase transition spin-coherent-state variational method the energy functional
  • 相关文献

参考文献5

二级参考文献45

  • 1高云峰,宋同强,冯健.与双模腔场具有不同耦合常数的两原子辐射谱[J].原子与分子物理学报,1997,14(2):323-329. 被引量:6
  • 2S. Pancharatnam, Proc. Indian Acad. Sect. A 44 (1956) 274.
  • 3M.V. Berry, Proc. R. Soc. London A 392 (1984) 45.
  • 4B. Simon, Phys. Rev. Lett. 51 (1983) 2167.
  • 5F. Wilczek and A. Zee, Phys. Rev. Lett. 52 (1984) 2111.
  • 6A. Carollo, I.F. Guridi, M.F. Santos, and V. Vedral, Phys. Rev. Lett. 90 (2003) 160402.
  • 7D. Gamliel and J.H. Freed, Phys. Rev. A 39 (1989) 3238.
  • 8G.D. Chiara and G.M. Palma, Phys. Rev. Lett. 91 (2003) 090404.
  • 9A. Carollo, F.M. Santos, and V. Vedral, Phys. Rev. A 67 (2003) 063804.
  • 10X.X. Yi and E. SjSqvist, Phys. Rev. A 70 (2004) 042104.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部