摘要
在稀土熔盐的电解过程中,不同的通电方式对槽内各物理场影响也不同,进而会对电解槽的电解效率产生一定的影响。本文以某企业8 kA稀土电解槽为原型,通过Comsol的热电耦合模块研究通电铜板单侧与多侧分布的通电方式及通电铜板的不同位置分布下的电解槽电解时内部各物理场的变化情况,通过对比电流密度、电势差、电解温度的大小寻找最合适的通电方式。结果表明:只考虑电解效率时,导电板四侧中位通电最优分布方式,此时电解槽内电流密度最大,电能损耗最低,电解效果最好。若考虑制造成本以及可操作性,导电板单侧中位分布是最优解,这种设计的电解槽电解效率较高,同时也留出较大操作空间。其余几种分布均存在弊端,需要进一步完善。该研究旨在为稀土电解槽的结构优化提供参考意见。
In the electrolytic process of rare earth molten salt, different electrification modes have different effects on the physical fields in the cell, which will also have a certain impact on the electrolytic efficiency of the cell. In this paper, the 8 kA rare earth electrolytic cell of an enterprise is taken as the prototype, through the thermoelectric coupling module of Comsol, the single-side and multi-side power-on mode and the change of the internal parameters of electrolytic cell under the distribution of different positions of the electrified copper plate are studied to find the most suitable power-on mode. The purpose of this study is to provide reference for structure optimization of rare earth electrolytic cell. The results show that: when only the electrolytic efficiency is considered, the median distribution of the four sides of the conductive plate is the optimal structure, and the current density in the electrolytic cell is the highest, the electric energy loss is the lowest, and the electrolytic effect is the best. Considering the manufacturing cost and operability, the single-side median distribution of the conductive plate is the optimal solution. The electrolytic cell with this design has higher electrolytic efficiency and leaves more room for operation. The other distributions have drawbacks and need to be further better.
作者
龚姚腾
吕招东
陈泽斌
逄启寿
刘胜
万福兴
GONG Yaoteng;LYU Zhaodong;CHEN Zebin;PANG Qishou;LIU Sheng;WAN Fuxing(School of Mechanical and Electrical Engineering,Jiangxi University of Science and Technology,Ganzhou 341000,China)
出处
《中国有色冶金》
CAS
北大核心
2024年第1期112-118,共7页
China Nonferrous Metallurgy
关键词
稀土
电解槽
通电方式
结构优化
数值模拟
电流密度
电势差
电解温度
rare earth
electrolytic cell
mode of power supply
optimization of structure
numerical simulation
current density
potential difference
electrolysis temperature