期刊文献+

基于深度置信网络的地表分类算法

Surface Classification Algorithm Based on Depth Belief Network
下载PDF
导出
摘要 复杂地形环境下的数据特征维度往往较大以及数据不平衡,传统地形识别研究使用的浅层算法如Softmax、支持向量机(Support Vector Machine,SVM)等面对复杂地形时表征能力下降分类精度不理想。论文在研究了传统方法和深度学习理论后,使用深度置信网络(Deep Belief Network,DBN)与Softmax进行有效结合后应用于地形识别研究,利用中心对称局部二值模式与颜色直方图结合获得特征,实验证明论文提出的算法比传统算法展现了更好的分类效果。 In complex terrain environment,the data feature dimension is usually large and the data is not balanced.The tradi⁃tional shallow algorithms such as Softmax and Support Vector Machine(SVM)used in terrain recognition research decrease the rep⁃resentation ability and the classification accuracy is not ideal when facing complex terrain.In this paper,after studying the tradition⁃al methods and deep learning theory,Deep Belief Network(DBN)and Softmax are used for effective combination of terrain recogni⁃tion research,using the centrosymmetric local binary mode and color histogram to obtain features.Experimental results show that the proposed algorithm has better classification effect than the traditional algorithm.
作者 张哲 郭剑辉 楼根铨 张文俊 ZHANG Zhe;GUO Jianhui;LOU Genquan;ZHANG Wenjun(School of Computer Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094;Jiangnan Shipbuilding(Group)Co.,Ltd.,Shanghai 201913)
出处 《计算机与数字工程》 2023年第11期2490-2492,共3页 Computer & Digital Engineering
基金 新疆建设兵团重点领域科技攻关项目(编号:2019BC010) 国家自然科学基金项目(编号:61603190)资助。
  • 相关文献

参考文献4

二级参考文献17

  • 1陈默,何小海,吴炜,杨晓敏,付光荣.结合独立与连续字符识别的集装箱号识别技术[J].四川大学学报(工程科学版),2011,43(S1):139-145. 被引量:5
  • 2Veropoulos K., Campbell C. and Crisfianini N. Controlling the Sensitivity of Support Vector Machines[A]. Proceedings of the 16^th International Joint Conference on Artificial Intelligence (IJCAI 1999) [C]. Stockholm, Sweden: IJCAI Press, 1999:55 - 60.
  • 3R. Akbani, S. Kwek and N. Japkowicz. Applying Support Vector Machines to Imbalanced Datasets [ A ]. Proceedings of the 15th European Conference on Machine Learning (ECML 2004) [ C]. Italy: Springer Press, 2004.39 - 50.
  • 4Yuan J., Li J., and Zhang B. Learning Concepts from Large Scale Imbalanced Data Sets using Support Ouster Machines [ A].Proceedings of the 14th annul ACM International Conference on Multimedia[ C ]. Santa Barbara: ACM Press, 2006. 441 - 450.
  • 5P. Kang and S. Cho. EUS SVMs: Ensemble of Under - Sampied SVMs for Data Imbalance Problems [A]. Proceedings of the 13^th International Conference on Neural Information Processing (ICONIP 2006) [C]. Hong Kong: Springer Press, 2006: 837 - 846.
  • 6T Imam, K M Ting, J Kamruzzaman. z - SVM: An SVM for Improved Classification of Imbalanced Data [ A ]. Proceedings of the 19th Australian Joint Conference on Artifical Intelligence (AJCAI 2006) [ C]. Hobart, Australia: Springer Press, 2006. 264 - 273.
  • 7Chawla N V, Bowyer K W, Hall L O, Kegelmeyer W. P. Smote: Synthetic Minority Over-sampling Technique[ J]. Journal of Artificial Intelligence Research. (JAIR) ,2002,16:321 - 357.
  • 8Y. Liu,A.An,X.Huang. Boosting prediction accuracy on irn- balanced datasets with SVM ensembles[ A]. Proceedings of the 10th Pacific- Asia Conference on Knowledge Discovery and Data Mining ( PAKDD 2006) [ C ]. Singapore: Springer Press, 2006:107 - 118.
  • 9J T Kwok, I W Tsang. The Pre-image Problem in Kernel Methods [J]. IEEE. Transactions on Neural Networks,2004, 15(6) : 1517- 1525.
  • 10J C Crower. Adding a Point to Vector Diagrams In Multivariate Analysis [ J]. Biometrika, 1968,55 (3) : 582 - 585.

共引文献204

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部