摘要
Glioma is one of the most common malignant tumors of the central nervous system,leading high mortality rates in human.Aggregation-induced emission(AIE)photosensitizers-based photodynamic therapy(PDT)has emerged as a promising therapeutic strategy for least-invasive treatment of glioma,which involves local irradiation of the tumor using an external near-infrared(NIR)laser.Unfortunately,most AIE photosensitizers suffered from poorly penetration of the visible light excitation,bad spatiotemporal resolution in deep tissues and low efficient blood-brain barrier(BBB)crossing ability,which greatly limited the clinical practice of AIE photosensitizers for especially deep-seated brain tumor treatment.In this work,we developed a multifunctional NIR-driven theranostic agent through hybrid of AIE photosensitizers TIND with rare-earth doping nanoparticles(RENPs)NaGdF4:Nd/Yb/Tm with up/down dual-mode conversion luminescence.The theranostic agent was further decorated with D-type neuropeptide DNPY for crossing BBB and targeting glioma.Under the 808-nm light irradiation,the down-conversion NIR-II luminescence could indicate the position glioma and the upconversion NIR-I luminescence could trigger the AIE photosensitizers producing reactive oxygen species to inhibit orthotopic glioma tumor growth in situ.These results demonstrate that the integration of Dtype neuropeptide,AIE photosensitizers and RENPs could be promising candidates for in vivo NIR-II fluorescence image-guided through-skull PDT treatments of brain tumors.
基金
Natural Science Foundation of China,Grant/Award Numbers:T2222021,32011530115,32025021
National Key R&D Programs,Grant/Award Number:2019YFE0198700
Science and Technology Bureau of Ningbo City,Grant/Award Numbers:2020Z094,2021Z072
Excellent Member of Youth Innovation Promotion Association Foundation of CAS,Grant/Award Number:Y2021079
Innovation and Technology Commission,Grant/Award Number:MHP/047/19。