期刊文献+

基于ACNN的配电网故障识别与定位研究

Research on Distribution Network Fault Identification and Location Based on ACNN
下载PDF
导出
摘要 针对目前配电网故障诊断时存在计算时间长、定位精度低的问题,提出了一种基于自适应卷积神经网络的配电网故障识别与定位模型。通过自适应卷积神经网络训练电力数据特征,从而有效提取配电网电力故障特征信息,并基于全连接层对故障进行分类,从而实现端对端的故障检测。通过双端故障定位模型实现故障精确定位。实验结果表明,与DBN模型相比,所提ACNN模型综合性能更优,检测精度提高7.12%时,模型训练时间减少了42.7%。 Aiming at the problems of long calculation time and low location accuracy in current distribution network fault diagnosis,a distribution network fault identification and location model based on adaptive convolutional neural network is proposed.The adaptive convolutional neural network is used to train power data features,effectively extract power fault feature information from distribution networks,and classify faults based on the full connection layer to achieve end-to-end fault detection.Accurate fault location is achieved through a two-terminal fault location model.The experimental results show that the proposed ACNN model has better overall performance compared with the DBN model.When the detection accuracy is improved by 7.12%,the model training time is reduced by 42.7%.
作者 吴方权 代湘蓉 刘亦驰 WU Fangquan;DAI Xiangrong;LIU Yichi(Information Center of Guizhou Power Grid Co.,Ltd.,Guiyang 550003,China)
出处 《微型电脑应用》 2024年第2期149-153,共5页 Microcomputer Applications
关键词 配电网 故障识别 故障定位 深度学习 distribution network fault identification fault location deep learning
  • 相关文献

参考文献8

二级参考文献80

共引文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部