期刊文献+

不含K_(1,3)^(+)图的强边染色

Strong edge-coloring of graphs without K_(1,3)^(+)
原文传递
导出
摘要 一个图G的强边染色是将颜色分配给所有的边,使得每个颜色类的导出子图是一个匹配。在图G的强边染色中所需的最小颜色数称为图G的强边色数,边e=uv的度记为d(e)=d(u)+d(v),图G的边度记为d(G)=min{d(e)|e∈E(G)}。证明最大度为Δ且图的边度大于顶点数的不含K_(1,3)^(+)图的强边色数至多是Δ^(2)-Δ+1。 The strong edge-coloring of a graph G is to assign colors to all edges,so that the derived subgraphs of each color class are a matching.The minimum number of colors required in the strong edge-coloring of a graph G is called the strong chromatic index of the graph G,the degree of edge e=uv is recorded as d(e)=d(u)+d(v),the edge degree of G is recorded as d(G)=min{d(e)|e∈E(G)}.This paper proves that the strong chromatic index of the graph without K_(1,3)^(+) with the maximum degreeΔand edge degree of the graph greater than the number of vertices is at mostΔ^(2)-Δ+1.
作者 袁佳鑫 黄明芳 YUAN Jiaxin;HUANG Mingfang(School of Science,Wuhan University of Technology,Wuhan 430070,Hubei,China)
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2024年第2期53-58,共6页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(12261094)。
关键词 强边染色 强边色数 边度 strong edge-coloring strong chromatic index edge degree
  • 相关文献

参考文献3

二级参考文献17

  • 1BONDY J A, MURTY U S R. Graph theory with applications[M]. London: Macmillan, 1976.
  • 2ANDERSEN L D. The strong chromatic index of a cubic graph is at most 10[J]. Discrete Mathematics, 1992, 108:231-252.
  • 3HORáK P, HE Qing, TROTTER W T. Induced matchings in cubic graphs[J]. Graph Theory, 1993, 17(2):151-160.
  • 4CRANSTON D. Strong edge-coloring graphs with maximum degree 4 using 22 colors[J]. Discrete Mathematics, 2006, 306:2772-2778.
  • 5FAUDREE R J, GYSRFAS A, SCHELP R H, et al. The strong chromatic index of graphs[J]. Ars Combin, 1990, 29B:205-211.
  • 6BORODIN O V, IVANOVA A O. Precise upper bound for the strong edge chromatic number of sparse planar graphs[J]. Discuss Math Graph Theory, 2013, 33:759-770.
  • 7MONTASSIER M, PêCHER A, RASPAUD A. Strong chromatic index of planar graphs with large girth[J]. Graph Theory and Applications, CRM Series, 2013, 16:265-270.
  • 8HUDáK D, LU?AR B, SOTáK R, et al. Strong edge-coloring of planar graphs[J]. Discrete Mathematics, 2014, 324:41-49.
  • 9BENSMAIL J, HARUTYUNYAN A, HOCQUARD H, et al. Strong edge-coloring of sparse planar graphs[J]. Discrete Applied Mathematics, 2014, 179:229-234.
  • 10Andersen L D. The strong chromatic index of a cubic graph is at most 10[J]. Discrete Mathematics, 1992, 108: 231-252.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部