摘要
一个图G的强边染色是将颜色分配给所有的边,使得每个颜色类的导出子图是一个匹配。在图G的强边染色中所需的最小颜色数称为图G的强边色数,边e=uv的度记为d(e)=d(u)+d(v),图G的边度记为d(G)=min{d(e)|e∈E(G)}。证明最大度为Δ且图的边度大于顶点数的不含K_(1,3)^(+)图的强边色数至多是Δ^(2)-Δ+1。
The strong edge-coloring of a graph G is to assign colors to all edges,so that the derived subgraphs of each color class are a matching.The minimum number of colors required in the strong edge-coloring of a graph G is called the strong chromatic index of the graph G,the degree of edge e=uv is recorded as d(e)=d(u)+d(v),the edge degree of G is recorded as d(G)=min{d(e)|e∈E(G)}.This paper proves that the strong chromatic index of the graph without K_(1,3)^(+) with the maximum degreeΔand edge degree of the graph greater than the number of vertices is at mostΔ^(2)-Δ+1.
作者
袁佳鑫
黄明芳
YUAN Jiaxin;HUANG Mingfang(School of Science,Wuhan University of Technology,Wuhan 430070,Hubei,China)
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2024年第2期53-58,共6页
Journal of Shandong University(Natural Science)
基金
国家自然科学基金资助项目(12261094)。
关键词
强边染色
强边色数
边度
strong edge-coloring
strong chromatic index
edge degree