期刊文献+

Combining stochastic density functional theory with deep potential molecular dynamics to study warm dense matter 被引量:1

下载PDF
导出
摘要 In traditional finite-temperature Kohn–Sham density functional theory(KSDFT),the partial occupation of a large number of high-energy KS eigenstates restricts the use of first-principles molecular dynamics methods at extremely high temperatures.However,stochastic density functional theory(SDFT)can overcome this limitation.Recently,SDFT and the related mixed stochastic–deterministic density functional theory,based on a plane-wave basis set,have been implemented in the first-principles electronic structure software ABACUS[Q.Liu and M.Chen,Phys.Rev.B 106,125132(2022)].In this study,we combine SDFT with the Born–Oppenheimer molecular dynamics method to investigate systems with temperatures ranging from a few tens of eV to 1000 eV.Importantly,we train machine-learning-based interatomic models using the SDFT data and employ these deep potential models to simulate large-scale systems with long trajectories.Subsequently,we compute and analyze the structural properties,dynamic properties,and transport coefficients of warm dense matter.
机构地区 HEDPS
出处 《Matter and Radiation at Extremes》 SCIE EI CSCD 2024年第1期44-57,共14页 极端条件下的物质与辐射(英文)
基金 supported by the National Natural Science Foundation of China under Grant Nos.12122401 and 12074007.
  • 相关文献

参考文献4

二级参考文献8

共引文献14

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部