摘要
遥感图像目标检测是大规模拥挤城市场景的风险评估和救援的技术基础,面临着光照干扰、遮挡、密集、拥挤等挑战。现有工作主要基于可见光单模态的遥感数据,对密集目标的特征表达及可分离能力受限。提出了一种面向遥感车辆检测的多模态交互引导网络,通过构建双流网络及多模态交互引导学习机制,显著提升密集车辆目标的可分离度,解决由于类间距离小、类内距离大,导致密集车辆的检测性能差的难题。在Potsdam公开数据集和DLR音乐节数据上的实验表明了该算法的鲁棒性和有效性。
Object detection in remote sensing images is the technical basis for risk assessment and rescue of large-scale crowded urban scenes.It faces such challenges as light interference,occlusion,density crowdedness and others.The existing work is mainly based on visible light monomode remote sensing data with a limited feature representation of dense targets and object separability.A multimodal interaction-guided network for remote sensing vehicle detection is proposed.By building a dual-flow network and a multimodal interaction-guided learning mechanism,the separability of dense vehicle targets can be significantly improved and the issue of poor detection performance of dense vehicles caused by small inter-class distance and large intra-class distance are addressed.The experiments on the Potsdam public datasets and DLR music festival data demonstrate the robustness and effectiveness of the proposed algorithm.
作者
吴鑫
王莉
徐连明
费爱国
WU Xin;WANG Li;XU Lianming;FEI Aiguo(The School of Computer Science(National Pilot Software Engineering School),Beijing University of Posts and Telecommunications,Beijing 100876,China;The School of Electronic Engineering,Beijing University of Posts and Telecommunications,Beijing 100876,China)
出处
《指挥与控制学报》
CSCD
北大核心
2024年第1期1-8,共8页
Journal of Command and Control
基金
国家自然科学基金(62101045,62171054)
北京市自然科学基金(L222041)资助。
关键词
遥感图像
密集目标
目标检测
多模态
交互引导机制
remote sensing image
dense target
target detection
multimodal
interaction-guided mechanism