期刊文献+

基于改进结构与位置对齐网络的表结构识别法 被引量:1

Table structure recognition method based on improved structure and position alignment network
下载PDF
导出
摘要 针对现有表格结构检测方法运算量大,表格结构识别准确率低的问题,提出了一种改进的表格结构识别方法。该方法优化了结构与位置对齐网络,提出在一个轻量级的CPU卷积神经网络PPLCNet较深层增加残差连接,加强网络的学习能力;在特征提取和特征融合之间引入卷积块注意力模块(convolutional block attention module,CBAM)机制,同时从通道和空间维度加强模型对目标对象的定位能力;在Head部分采用卷积层替代全连接层,实现权重共享,用来降低模型的计算量;此外,还采用Smooth L1损失函数,通过回归表格四顶点坐标,避免图像畸变对于模型性能的影响;为了验证算法的性能,采用PubTabNet数据集进行测试,结果表明所提方法的准确率(Acc)达到71.58%,基于树编辑距离的相似度(tree-editdistance-based similarity,TEDS)达到94.47%;相比较于改进前模型精度提升了2.76%,TEDS提升了0.79%,模型综合性能更优。 In response to the problem of the existing table structure detection method,the accuracy of the accuracy of the table structure is low,and a improved table structure recognition method is proposed.This method optimizes the structure and position alignment network,and proposes to increase the residual connection in a lightweight CPU convolutional neural network PPLCNet to enhance the learning capabilities of the network.The introduction of convolutional block attention module(CBAM)mechanism,at the same time,the localization ability of the model to the target object is strengthened from the channel and spatial dimensions.Use a convolutional layer to replace the full connection layer in the head part to reduce the weight sharing to reduce the calculation of the model.In addition,Smooth Ll loss function is also used to avoid the impact of image distortion on model performance by regression of table four vertex coordinates.In order to verify the performance of the algorithm,the PubTabNet dataset was tested,the results showed that the accuracy(Acc)of the method reached 71.58%,and the tree-editdistance-based similarity(TEDS)reached 94.47%.Compared with the accuracy of the model before improved,the accuracy of the model was increased by 2.76%,TEDS increased by 0.79%,and the model comprehensive performance was better.
作者 陈雨 蒋三新 Chen Yu;Jiang Sanxin(College of Electronics and Information Engineering,Shanghai University of Electric Power,Shanghai 201306,China)
出处 《国外电子测量技术》 北大核心 2023年第12期57-62,共6页 Foreign Electronic Measurement Technology
关键词 深度学习 表格结构识别 注意力机制 残差网络 deep learning table structure recognition attention mechanisms residual network
  • 相关文献

参考文献6

二级参考文献49

  • 1刘媛媛,张硕,于海业,王跃勇,王佳木.基于语义分割的复杂场景下的秸秆检测[J].光学精密工程,2020,28(1):200-211. 被引量:18
  • 2苏艳波,张东远,李洪文,何进,王庆杰,李慧.基于自动取阈分割算法的秸秆覆盖率检测系统[J].农机化研究,2012,34(8):138-142. 被引量:10
  • 3成瑜,何洁月.本体驱动的半结构化Web生物数据抽取[J].计算机工程,2006,32(5):192-194. 被引量:5
  • 4许文,都云程,李渝勤,施水才.一种通用HTML网页主题信息提取方法[J].现代图书情报技术,2007(1):40-43. 被引量:11
  • 5Lim S,Ng Y.An Automated Approach for Retrieving Hierarchical Data From HTML Tables[A].In Proceedings of the Eighth International Conference on Information and Knowledgd management[C]∥ Kansas City,Missouri,1999:466-474.
  • 6Hu J,Kashi R,Lopresti D,et al.Why Table Ground-Truthing is Hard[A].In Proceedings of the 16th International Conference on Document Analysis and Recognition[C]∥ Honolulu,Hawaii 2001:129-133.
  • 7Chen H.Mining Tables From Large Scale HTML Texts[A].In Proceedings of the 18th International Conference on Computational Linguistics[C]∥ Philadelphia,Pennsylvania,2000:166-172.
  • 8Tengli A,Yang Y,Li N.Learning Table Extraction From Examples[A].In Proceedings of 20th International Conference on Computational Linguistics[C]∥ Geneva,Switzerland,2004:23-27.
  • 9Cohen W W,Hurst M,Jensen L S.A flexible Learning System for Wrapping Tables and Lists in Html Documents[A].In Proceedings of International World Wide Web Conferences[C]∥ Honolulu,Hawaii,2002,5:232-241.
  • 10Embley DW,Jiang Y S,Ng Y K.Record-Boundary Discovery in Web Documents[A].In Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data[C]∥ Philadelphia,Pennsylvania,1999,5/6:467-478.

共引文献32

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部