期刊文献+

多模态命名实体识别方法研究进展 被引量:1

Research Progress of Multimodal Named Entity Recognition
下载PDF
导出
摘要 为了解决多模态命名实体识别(MNER)研究中存在的文本特征语义不足、视觉特征语义缺失、图文特征融合困难等问题,多模态命名实体识别方法相继被提出。首先,总结了多模态命名实体识别方法的整体框架以及各部分常用的技术,随后对其进行梳理并分类为基于BiLSTM的MNER方法和基于Transformer的MNER方法,并根据模型结构将其划分为前融合模型、后融合模型、Transformer单任务模型、Transformer多任务模型等4类模型结构。其次,在Twitter-2015、Twitter-2017 2个数据集上,分别对这2类方法进行实验,结果表明:多特征协同表示能增强各模态特征的语义,多任务学习能够促进模态特征融合或者结果融合,从而提升MNER的准确性。建议在MNER的未来研究中,着重关注通过多特征协同表示来增强模态语义,通过多任务学习促进模态特征融合或结果融合等方向的研究。 In order to solve the problems in studies of multimodal named entity recognition,such as the lack of text feature semantics,the lack of visual feature semantics,and the difficulty of graphic feature fusion,a series of multimodal named entity recognition methods were proposed.Firstly,the overall framework of multi modal named entity recognition methods and common technologies in each part were examined,and classified into BilSTM-based MNER method and Transformer based MNER method.Furthermore,according to the model structure,it was further divided into four model structures,including pre-fusion model,post-fusion model,Transformer single-task model and Transformer multi-task model.Then,experiments were carried out on two data sets of Twitter-2015 and Twitter-2017 for these two types of methods respectively.The experimental results showed that multi-feature cooperative representation could enhance the semantics of each modal feature.In addition,multi-task learning could promote modal feature fusion or result fusion,so as to improve the accuracy of MNER.Finally,in the future research of MNER,it was suggested to focus on enhancing modal semantics through multi-feature cooperative representation,and promoting model feature fusion or result fusion by multi-task learning.
作者 王海荣 徐玺 王彤 荆博祥 WANG Hairong;XU Xi;WANG Tong;JING Boxiang(College of Computer Science and Engineering,North Minzu University,Yinchuan 750021,China;The Key Laboratory of Images&Graphics Intelligent Processing of State Ethnic Affairs Commission,North Minzu University,Yinchuan 750021,China)
出处 《郑州大学学报(工学版)》 CAS 北大核心 2024年第2期60-71,共12页 Journal of Zhengzhou University(Engineering Science)
基金 宁夏回族自治区自然科学基金资助项目(2023AAC03316) 宁夏回族自治区教育厅高等学校科学研究重点项目(NYG2022051) 北方民族大学中央高校基本科研业务费专项资金资助项目(2022PT_S04) 北方民族大学校级科研项目(2021XYZJK06)。
关键词 多模态命名实体识别 TRANSFORMER BiLSTM 多模态融合 多任务学习 multimodal named entity recognition Transformer BiLSTM multimode fusion multitasking learning
  • 相关文献

参考文献19

二级参考文献94

共引文献278

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部