期刊文献+

基于机器学习构建社区老年人焦虑抑郁评估预测模型

Constructing a Prediction Model for Anxiety and Depression among Elderly People in the Community Based on Machine Learning
原文传递
导出
摘要 目的基于机器学习算法开发社区老年人焦虑抑郁预测模型。方法根据2019年山西省调查收集的15079例老年人社会人口统计学因素和疾病状况,利用广泛性焦虑障碍量表(GAD-7)和患者健康问卷(PHQ-9)进行焦虑抑郁评估,学习患有心理疾病的老年人群表征,使用随机森林、XGBoost和LightGBM算法分别建立预测模型,以受试者工作曲线(ROC)曲线下面积(AUC)、准确率、精度、召回率和F分数量化了预测性能并进行排序。基于Shapley值的特征归因框架分析老年人焦虑抑郁的高风险因素。结果我们构建的基于LightGBM的全特征预测模型AUC可达0.805(95%CI:0.794~0.811),与随机森林0.730(95%CI:0.702~0.741)和XGboost 0.802(95%CI:0.780~0.807)相比,LightGBM算法显示出了较高的准确率,从而使其成为较强的预测模型。简化后的模型确定的8个特征可以达到0.75左右的AUC。结论构建的全新的焦虑抑郁评估预测模型,可以应用于基层健康普查或者自查,对社区老年人焦虑抑郁进行快速预测。 Objective To develop a prediction model using machine learning to identify anxiety and depression in elderly individuals.MethodsThis study collected data from 15079 elderly individuals in Shanxi Province,including their social demographic factors and disease status.Anxiety and depression were evaluated using GAD-7 and PHQ-9 scales to understand the characteristics of mental illness in the elderly.The evaluation indexes included accuracy,recall,precision,F1 score,Receiver Operating Characteristic Curve(ROC),and area under the curve(AUC),which were derived from the confusion matrix and several models.ResultsThe output of our study clearly demonstrates that the full feature prediction based on LightGBM is highly accurate,with an AUC of 0.805[95%CI:0.794-0.811].This outperforms the Random Forest model,which achieved an AUC of 0.730[95%CI:0.702-0.741],and the XGboost model,which achieved an AUC of 0.802[95%CI:0.780-0.807].Therefore,LightGBM algorithm proves to be a strong prediction model.Our simplified model,based on eight selected features,also achieves a respectable AUC of approximately 0.75.ConclusionsThe new prediction model for anxiety and depression specifically designed for the elderly can be effectively utilized in grassroots health surveys or for self-examinations to efficiently predict anxiety and depression levels among the elderly population in the community.
作者 刘杰英 郑文 方飞腾 赵偲 郑金平 Liu Jieying;Zheng Wen;Fang Feiteng;Zhao Cai;Zheng Jinping(Department of Geriatrics,Peace Hospital,Changzhi Medical College,Changzhi 046000,China;Health Big Data Center,Changzhi Medical College,Changzhi 046000,China;Institute of Public Safety and Big Data,Taiyuan University of Technology,Jinzhong 030060,China)
出处 《中华老年医学杂志》 CAS CSCD 北大核心 2024年第2期234-239,共6页 Chinese Journal of Geriatrics
关键词 人工智能 预测 焦虑 抑郁 Artificial intelligence Forecasting Anxiety Depression
  • 相关文献

参考文献8

二级参考文献50

  • 1饶顺曾,陈碧霞,周治荣,沈文龙,蔡军,施慎逊.社区老年人焦虑、抑郁状况的调查[J].上海精神医学,2002,14(2):77-79. 被引量:72
  • 2邱扶东.上海老年人焦虑及其影响因素研究[J].心理科学,2001,24(5):627-628. 被引量:7
  • 3王叶梅,陈国鹏,宋怡.成功老龄化的SOC模型研究综述[J].心理科学,2007,30(2):377-379. 被引量:15
  • 4Highet NJ,McNair BG,Davenport TA,et al.How much more can we lose? carer and family perspectives on living with a person with depression.Med J Aust,2004,181(7 Suppl):S6 -9.
  • 5Unutzer J,Katon W,Williams JW,et al.Improving primary care for depression in late life:the design of a multicenter randomized trial.Med Care,2001,39(8):785 -99.
  • 6Kroenke K,Spitzer RL,Williams JB.The PHQ-9:validity of a brief depression severity measure.J Gen Intern Med,2001,16 (9):606 -613.
  • 7Wulsin L,Somoza E,Heck J.The Feasibility of Using the Spanish PHQ -9 to Screen for Depression in Primary Care in Honduras.Prim Care Companion.J Clin Psychiatry,2002,4(5):191 -195.
  • 8Pinto-Meza A,Serrano-Blanco A,Penarruibia MT,et al.Assessing depression in primary care with the PHQ-9:can it be carried out over the telephone? J Gen Intern Med,2005,20(8):738 -42.
  • 9Spitzer R,Kroenke K,Williams JB.Validation and utility of a selfreport version of PRIME-MD:the PHQ primary care study.Primary Care Evaluation of Mental Disorders.Patient Health Questionnaire.JAMA,1999,282:1737-1744.
  • 10Williams LS,Brizendine EJ,Plue L,et al.Performance of the PHQ-9 as a screening tool for depression after stroke.Stroke,2005,36(3):635 -638.

共引文献325

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部