期刊文献+

多尺度特征与双注意力机制的高光谱影像分类

Multi-scale feature and dual-attention mechanism for hyperspectral image classification
原文传递
导出
摘要 针对经典卷积神经网络(convolutional neural network, CNN)的高光谱影像分类方法存在关键细节特征表现不足、训练需要大量样本等问题,提出一种基于多尺度特征与双注意力机制的高光谱影像分类方法。首先,利用三维卷积提取影像的空谱特征,并采用转置卷积获得特征的细节信息;然后,通过不同尺寸的卷积核运算提取多尺度特征并实现不同感受野下多尺度特征的融合;最后,设计双注意力机制抑制混淆的区域特征,同时突出区分性特征。在两幅高光谱影像上进行的实验结果表明:分别在每类地物中随机选取10%和0.5%的样本作为训练样本,提出模型的总体分类精度分别提高到99.44%和98.86%;对比一些主流深度学习分类模型,提出模型能够关注于对分类任务贡献最大的关键特征,可以获取更高的分类精度。 Hyperspectral image classification methods based on the classical convolutional neural network(CNN)have some problems,such as insufficient expression of key detail features and a large number of samples for training.Aiming at these problems,this paper proposes a hyperspectral image classification model with multi-scale features and dual-attention mechanism.Firstly,using 3D convolution,the spatial-spectral features of images can be directly extracted,and transposed convolution is adopted to get more details of the feature map.Then,a feature extraction module is built through convolution kernels of different sizes to achieve multi-scale feature fusion under different receptive fields.Finally,the dual-attention mechanism is designed to suppress the confused regional features and highlight the distinguishing features.The experimental results on two hyperspectral images show that when 10%and 0.5%samples are randomly selected as training samples for each class of ground object,the overall classification accuracy of the proposed model is improved to 99.44%and 98.86%,respectively.This model can obtain higher classification accuracy than some mainstream deep-learning classification models.Since the model can focus on more important detailed features during feature extraction,the classification effect is improved.
作者 吕欢欢 张峻通 张辉 LV Huanhuan;ZHANG Juntong;ZHANG Hui(College of Software,Liaoning Technical University,Huludao,Liaoning 125100,China;School of Information Engineering,Huzhou University,Huzhou,Zhejiang 313000,China)
出处 《光电子.激光》 CAS CSCD 北大核心 2024年第2期143-154,共12页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(42071428) 浙江省教育厅一般科研项目(Y202248546)资助项目。
关键词 高光谱影像分类 卷积神经网络(CNN) 转置卷积 多尺度特征 注意力机制 hyperspectral image classification convolutional neural network(CNN) transposed convolution multi-scale feature attention mechanism
  • 相关文献

参考文献9

二级参考文献68

共引文献184

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部