摘要
“万物智联”网络中系统感知层将部署海量标签,为快速获取粘贴标签的物品信息,设计一种基于特征值策略的标签防碰撞算法,结合电子标签ID识别码的二进制特性和异或运算,可准确地推断出任意两位碰撞位,以此消除对无效节点的查询,加快查询进程。仿真实验结果表明,所提算法可有效减少空闲时隙和总查询次数,提高系统效率,当标签数量为20000时,算法的系统效率达0.43,对比经典的查询树算法提高了24%,总查询次数减少了10905。
Massive labels will be deployed in the system perceptive layer of“Artificial Intelligence&Internet of Things(AIoT)”network.To quickly obtain information about items with pasted labels,a label anti-collision algorithm based on eigenvalue strategy is designed.By combining the binary characteristics of electronic label ID identification codes and exclusive or operation,any two collision bits can be accurately inferred,thereby eliminating queries for invalid nodes and accelerating the query process.The simulation results show that the proposed algorithm reduces the idle time slot and the total number of queries effectively,and improves the system efficiency.When the number of labels is 20000,the system efficiency of the proposed algorithm reaches 0.43,which is 24%higher than that of the classical query tree algorithm,and the total number of queries decreased by 10905.
作者
付钰
朱弘旭
刘鑫
文聪敏
FU Yu;ZHU Hongxu;LIU Xin;WEN Congmin(Computer Engineering Technical College(Artificial Intelligence College),Guangdong Polytechnic of Science and Technology,Zhuhai 519090,China;Noncommissioned Officer Institute Army Academy of Armored Forces,Changchun 130000,China)
出处
《现代信息科技》
2024年第3期176-181,共6页
Modern Information Technology
基金
广州市基础与应用基础研究项目(2023A04J0379)
广东省教育厅特色创新项目(2022KTSCX253)
广东省教育厅青年创新人才项目(2022WQNCX145)
广东省继续教育质量提升工程项目(JXJYGC2021KY0631)
2023年全国高等院校计算机基础教育研究会“计算机基础教育教学研究项目”(2023AFCEC204)。