摘要
目的探究基于深度学习重建(DLR)技术的人工智能图像重建系统(AiCE)在腹主动脉瘤腔内修复术后CT血管造影(CTA)复查中的应用价值。方法采用混合选代算法重建(HIR)和DLR-AiCE方法对26例腹主动脉瘤腔内修复术后患者CTA图像进行重组,并进行回顾性分析。对两组图像整体质量、脏器(肝脏、肾脏)、最大伪影层面支架内血管及最大伪影层面支架外血栓4个方面进行主观评分,将主观评分平均值作为最终评分,并分析评分的一致性。测量两组图像肝脏、肾脏、无支架层面腹主动脉、腹主动脉及主髂动脉段支架内伪影最重及伪影最少、支架外血栓伪影最重及伪影最少层面的CT值(HU)和标准差(SD)值,计算并比较伪影指数(AI)、信噪比(SNR)和对比噪声比(CNR)。结果DLR-AiCE组图像质量主观评分均高于HIR组(P均<0.001)。两位观察者间主观评分一致性较高[组内相关系数(ICC)为0.927,95%CI为0.905~0.944,P<0.001]。除右髂总动脉支架内最小伪影层面和肝脏层面外,DLR-AiCE组各个位置AI值均小于HIR组,差异有统计学意义(均P<0.05)。DLR-AiCE组各个位置SNR值均大于HIR组,差异有统计学意义(均P<0.05)。除右髂总动脉支架内最大伪影层面和双侧支架内最小伪影层面外,DLR-AiCE组各个位置CNR值均大于HIR组,差异有统计学意义(P均<0.05)。结论相比HIR,DLR-AiCE既能减少支架伪影,又能提高支架内外组织的图像质量,从而清晰显示周边器官、支架内外血管、瘤体血栓等情况,有利于腹主动脉瘤腔内修复术后患者的评估。
Objective To study the application value of advanced intelligent clear-IQ engine(AiCE)of deep learning reconstruction(DLR)technology in CT angiography(CTA)after endovascular repair of abdominal aortic aneurysm(EVAR).Methods CTA images of 26 patients were reconstructed by hybrid iterative reconstruction(HIR)and DLR-AiCE methods.The quality of the overall images,liver and kidneys,vascular lumen within the stent and thrombus outside the stent at the level of maximum artifact was scored subjectively.The average of the four subjective scores was taken as the final score and the consistency of the score was analyzed.CT values and standard deviations of the liver,kidneys,aorta,and stent were calculated and the artifact index(AI),signal-to-noise ratio(SNR)and contrast-to-noise ratio(CNR)were compared.Results The subjective image quality scores were higher(all P<0.001)in DLR-AiCE than that in HIR groups.There was a high agreement in subjective ratings between the two observers(ICC=0.927,95%CI:0.905 to 0.944,P<0.001).Except for the minimum artifact within the right iliac stent and at the hepatic level,the AI value in the DLR-AiCE group was significantly(all P<0.05)lower than that in the HIR group.SNRs in DLR-AiCE group were significantly(all P<0.05)greater than that in the HIR group.Except for the maximum artifact in the right iliac stent and the minimum artifacts in the bilateral iliac stents,the CNRs in the DLR-AiCE group were significantly(all P<0.05)greater than that in the HIR group.Conclusion DLR-AiCE reduces stent artifacts and improves image quality of peripheral organs and aneurysm thrombus.DLR-AiCE is more conducive than HIR for CTA evaluation after EVAR.
作者
谢定祥
赖志满
陈明杰
马慧
徐如林
黄木兰
赵静
吴嘉乐
XIE Dingxiang;LAI Zhiman;CHEN Mingjie;MA Hui;XU Rulin;HUANG Mulan;ZHAO Jing;WU Jiale(Department of Radiographic Imaging,The First Affiliated Hospital of Sun Yat-sen University,Guangdong 510080,China)
出处
《影像诊断与介入放射学》
2024年第1期44-49,共6页
Diagnostic Imaging & Interventional Radiology
基金
国家自然科学基金青年基金(82202217)。
关键词
腹主动脉瘤
计算机断层扫描血管造影
深度学习重建
Abdominal aortic aneurysm
Computed tomography angiography
Deep learning reconstruction