期刊文献+

基于AutoRec的推荐系统模型研究

Research on recommendation system model based on AutoRec
下载PDF
导出
摘要 传统推荐算法对用户的历史记录有严重的依赖,同时面临工程复杂与表达能力差,挖掘数据潜藏模式难的问题。为增强模型表达能力,满足更多数据类型和业务场景,以及解决推荐系统冷启动问题,实验采用单隐层神经网络推荐模型AutoRec进行改进,用于计算用户User与物品Item之间隐藏特征。同时,采用概率统计学的方法,解决系统冷启动问题。实验在PyTorch框架上进行数据集的训练,与传统推荐算法相比,该模型具有更强的表达能力和更精准的推荐结果。 The traditional recommendation algorithm relies heavily on the historical records of users,and at the same time,it is difficult to mine the hidden patterns of data due to the complexity of engineering and poor expression ability.To enhance the ability of model expression,meet more data types and business scenarios,and solve the cold startup problem of the recommendation system.In this experiment,AutoRec,a recommendation model of single hidden layer neural network,was used to calculate hidden features between User and Item.At the same time,the method of probability statistics is used to solve the cold start problem of the system.In this experiment,data sets are trained on PyTorch framework.Compared with traditional recommendation algorithms,this model has stronger expression ability and more accurate recommendation results.
作者 严武军 刘守业 贺娇娇 Yan Wujun;Liu Shouye;He Jiaojiao(College of Computer Science and Technology,Taiyuan Normal University,Jinzhong 030619,China)
出处 《现代计算机》 2023年第24期69-73,共5页 Modern Computer
关键词 推荐系统 AutoRec 神经网络 冷启动 recommendation system AutoRec neural network cold start
  • 相关文献

参考文献6

二级参考文献27

  • 1Hinton G,Salakhutdinov R.Reducing the dimensionality of data with neural networks [J].Science,2006,313(5786):504-507.
  • 2Le Q V,Ranzato M A,Monga R.Building high-level scale unsupervised learning [C]∥International Conference on Acoustics,Speech and Signal Processing.Vancouver,Canada,2013:8595-8598.
  • 3Krizhevsky A,Sutskever I,Hinton G.Imagenet classificationwith deep convolutional neural networks [C]∥Advances in Neural Information Processing Systems.California,America,2012:1106-1114.
  • 4Zeiler M D,Fergus R.Visualizing and Understanding Convolutional Neural Networks [J].arXiv:1311.2901,2013.
  • 5Bengio Y.Learning deep architectures for AI [J].Foundations and Trendsin Machine Learning,2009,2(1):1-12.
  • 6刘建国,周涛,郭强,汪秉宏.个性化推荐系统评价方法综述[J].复杂系统与复杂性科学,2009,6(3):1-10. 被引量:131
  • 7黄创光,印鉴,汪静,刘玉葆,王甲海.不确定近邻的协同过滤推荐算法[J].计算机学报,2010,33(8):1369-1377. 被引量:217
  • 8吕琳媛.复杂网络链路预测[J].电子科技大学学报,2010,39(5):651-661. 被引量:244
  • 9吕琳媛,陆君安,张子柯,闫小勇,吴晔,史定华,周海平,方锦清,周涛.复杂网络观察[J].复杂系统与复杂性科学,2010,7(2):173-186. 被引量:29
  • 10赵宇翔,范哲,朱庆华.用户生成内容(UGC)概念解析及研究进展[J].中国图书馆学报,2012,38(5):68-81. 被引量:287

共引文献319

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部