期刊文献+

认知障碍脑功能磁共振图像的孪生网络特征工程算法

Siamese Network Based Feature Engineering Algorithmfor Encephalopathy fMRI Images
下载PDF
导出
摘要 功能磁共振成像技术(fMRI:functional Magnetic Resonance Imaging)是一种高效的脑成像技术研究方法,为减少fMRI数据的冗余,将其转换为更具分类潜力的特征,提出一个基于孪生网络(SANet:Siamese Network)的特征构造算法SANet,将多个扫描点下的脑区信息类比为图,应用改进的AlexNet网络进行特征构造,并结合增量特征选择策略达到优化分类的目的。通过实验对比3种不同网络结构和4种分类器对SANet模型的影响,并进行消融实验,验证增量特征选择算法对SANet构造特征的分类效果。实验表明,SANet模型能对fMRI数据进行有效构造,且提高原始特征的分类性能。 fMRI(functional Magnetic Resonance imaging)is an efficient research method for brain imaging technique.In order to reduce the redundancy of the fMRI data and transform the fMRI data to the constructed features with more classification potential,a feature construction method based on the siamese network named as SANet(Siamese Network)is proposed.It engineered the brain regions features under multiple scanning points of an fMRI image.The improved AlexNet is used for feature engineering,and the incremental feature selection strategy is used to find the best feature subset for the encephalopathy prediction task.The effects of three different network structures and four classifiers on the SANet model are evaluated for their prediction efficiencies,and the ablation experiment is conducted to verify the classification effect of the incremental feature selection algorithm on the SANet features.The experimental data shows that the SANet model can construct features from the fMRI data effectively,and improve the classification performance of original features.
作者 周丰丰 王倩 董广宇 ZHOU Fengfeng;WANG Qian;DONG Guangyu(College of Computer Science and Technology,Jilin University,Changchun 130012,China)
出处 《吉林大学学报(信息科学版)》 CAS 2024年第1期45-50,共6页 Journal of Jilin University(Information Science Edition)
基金 国家自然科学基金资助项目(62072212,U19A2061) 吉林省中青年科技创新创业卓越人才(团队)基金(创新类)资助项目(20210509055RQ) 吉林省大数据智能计算实验室基金资助项目(20180622002JC)。
关键词 功能磁共振成像 特征构造 SANet模型 孪生网络 增量特征选择 functional magnetic resonance imaging(fMRI) feature engineering siamese network(SANet)model siamese network incremental feature selection
  • 相关文献

参考文献1

二级参考文献11

  • 1陈友,程学旗,李洋,戴磊.基于特征选择的轻量级入侵检测系统[J].软件学报,2007,18(7):1639-1651. 被引量:78
  • 2GERHARD W, MIROSEAV K. Learning in the presence of concept drift and hidden contexts [J]. Machine Learning, 1996, 23(1) : 69 -101.
  • 3YUE XUN, MO HONGWEI, CHI ZHONGXIAN. Immune-inspired incremental feature selection technology to data streams [ J]. Applied Soft Computing, 2008, 8(2): 1041-1049.
  • 4KATAKIS I, TSOUMAKAS G, VLAHAVAS I P. On the utility of incremental feature selection for the classification of textual data streams [ C]//PCI 2005: Proceedings of the 10th Panhellenic Conference on Informatics, LNCS 3746. Berlin: Springer, 2005: 338- 348.
  • 5KATAKIS I, TSOUMAKAS G, VLAHAVAS I. Dynamic feature space and incremental feature selection for the classification of textual data streams [ C]// European Conference on Machine Learning/ Practice of Knowledge Discovery in Databases - 2006 International Workshop on Knowledge Discovery from Data Streams. Berlin: [ s.n.], 2006: 107-116.
  • 6LIU H, YU L. Towards integrating feature selection algorithms for classification and clustering [ J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(4): 491-502.
  • 7PARK J S, SHAZZAD K M, KIM D S. Toward modeling lightweight intrusion detection system through correlation-based hybrid feature selection [ C]//CISC 2005: Proceedings of the First SKLOIS Conference on Information Security and Cryptology, LNCS 3822. Berlin: Springer, 2005:279 - 289.
  • 8YANG Y, PEDERSEN J O. A comparative study on feature selection in text categorization [ C]//Proceedings of the Fourteenth International Conference on Machine Learning. San Francisco, CA: Motgan Kanfmann Publishers, 1997:412 -420.
  • 9HAN JIAWEI, MICHELINE K. Data mining concepts and techniques [ M]. 2nd ed. Beijing: China Machine Press, 2007.
  • 10LI FEIXIONG, LIU QUAN. An improved algorithm of decision trees for stream data based on VFDT [ C]//2008 International Symposium on Information Science and Engineering. Shanghai: [ s. n. ], 2008:597-600.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部