期刊文献+

基于卷积神经网络和模态转换的磁瓦内部缺陷检测方法

Internal defect detection of magnetic tile based on CNN and modal transformation
下载PDF
导出
摘要 针对人工检测磁瓦内部缺陷过程中需要成熟的经验知识,检测过程不稳定且效率较低等问题,设计一套智能化检测系统。受人工检测的启发,提出一种基于卷积神经网络和模态转换的磁瓦内部缺陷检测方法。将时域信号转换为时-频域语谱图,利用卷积神经对语谱图提取特征并分类。为更精准地强调重要信息而抑制无关信息,将坐标注意力机制引入到卷积神经网络中。提出的基于卷积神经网络和模态转换的预测模型的准确率达到98.4%,证明提出的检测方法对于磁瓦内部缺陷检方法是有效的。实验结果表明,模态转换和坐标注意力机制能提升模型的性能。 Aiming at the demand for mature experience knowledge,unstable detection process and low efficiency in the processing of manual operation,an intelligent detection system is designed to avoid those drawbacks.Inspired by manual detection,we propose an internal defect detection method of magnetic tile based on convolution neural network(CNN)and modal transformation.The time domain signal is transformed into time-frequency domain spectrogram,and the convolution neural network is used to extract features and classify the spectrogram.In order to precisely emphasize important information and suppress irrelevant information,the coordinate attention mechanism is introduced into CNN.The accuracy of the prediction model based on convolution neural network and modal transformation achieves 98.4%,which proves that the proposed detection method is effective for the internal defect detection method of magnetic tile.The experimental results show that the modal transformation and coordinate attention mechanism can improve the performance of the model.
作者 卢后洪 谢罗峰 朱杨洋 殷鸣 杜波 殷国富 LU Houhong;XIE Luofeng;ZHU Yangyang;YIN Ming;DU Bo;YIN Guofu(School of Mechanical Engineering,Sichuan University,Chengdu 610065,China;Sichuan Special Equipment Inspection Institute,Chengdu 610000,China)
出处 《中国测试》 CAS 北大核心 2024年第2期22-27,共6页 China Measurement & Test
基金 中央高校基本业务费(2021SCU12146)。
关键词 磁瓦 卷积神经网络(CNN) 内部缺陷 模态转换 注意力机制 magnetic tile convolutional neural network(CNN) internal defect modal transformation attention mechanism
  • 相关文献

参考文献6

二级参考文献40

  • 1郭文佳,王向军.基于实时帧间处理算法的爆点目标检测[J].计量学报,2006,27(z1):38-41. 被引量:1
  • 2W. Y. Liu,J. G. Han.A fuzzy clustering-based binary threshold bispectrum estimation approach[J].Neural Computing and Applications.2012(1)
  • 3Eugenio C. Orosco,Natalia M. Lopez,Fernando di Sciascio.Bispectrum-based features classification for myoelectric control[J].Biomedical Signal Processing and Control.2012
  • 4Y. Zhou,J. Chen,G.M. Dong,W.B. Xiao,Z.Y. Wang.Application of the horizontal slice of cyclic bispectrum in rolling element bearings diagnosis[J].Mechanical Systems and Signal Processing.2011
  • 5F. Gu,Y. Shao,N. Hu,A. Naid,A.D. Ball.Electrical motor current signal analysis using a modified bispectrum for fault diagnosis of downstream mechanical equipment[J].Mechanical Systems and Signal Processing.2010(1)
  • 6Kuang Chua Chua,Vinod Chandran,U. Rajendra Acharya,Choo Min Lim.Application of higher order statistics/spectra in biomedical signals—A review[J].Medical Engineering and Physics.2010(7)
  • 7Juggrapong Treetrong,Jyoti K. Sinha,Fengshu Gu,Andrew Ball.Bispectrum of stator phase current for fault detection of induction motor[J].ISA Transactions.2009(3)
  • 8Z.D. Jiang,B.L. Luk,K.P. Liu.Bispectra-based impact acoustic non-destructive evaluation[J].NDT and E International.2009(7)
  • 9Fidel Ernesto Hernández Montero,Oscar Caveda Medina.The application of bispectrum on diagnosis of rolling element bearings: A theoretical approach[J].Mechanical Systems and Signal Processing.2007(3)
  • 10Yang Xiang,S.K Tso.Detection and classification of flaws in concrete structure using bispectra and neural networks[J].NDT and E International.2001(1)

共引文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部