期刊文献+

矩阵方程X-A^(*)(R+B^(*)XB)^(-t)A=Q的Hermite正定解及其扰动分析

The Hermite positive definite solution and perturbation analysis for the matrix equation X-A^(*)(R+B^(*)XB)^(-t)A=Q
下载PDF
导出
摘要 研究了非线性矩阵方程X-A^(*)(R+B^(*)XB)^(-t)A=Q(0<t≤1)的Hermite正定解及其扰动问题.给出矩阵方程有解的充分条件和必要条件,利用矩阵偏序和不动点定理讨论了该矩阵方程Hermite正定解的包含区间和存在性,得到取值范围并进一步精确.构造出计算该矩阵方程唯一Hermite正定解的迭代方法并推导出一阶扰动界.最后通过数值算例验证了所给迭代方法的有效性和可行性. The Hermitian positive definite solution and its perturbation problem of the nonlinear matrix equation X-A^(*)(R+B^(*)XB)^(-t)A=Q(1<t≤1)are studied.The sufficient conditions and necessary conditions for the existence of the solution of the matrix equation are given.By using matrix partial order and fixed point theorem,the inclusion interval and existence of the Hermite positive definite solution of the matrix equation are discussed,the value range is obtained and further accurate.An iterative method for calculating the unique Hermite positive definite solution of the matrix equation is constructed and the first order perturbation bound are derived.Finally,numerical examples are given to verify the effectiveness and feasibility of the proposed method.
作者 熊昊 罗显康 黄玉莲 XIONG Hao;LUO Xiankang;HUANG Yulian(Faculty of Science,Yibin University,Yibin,Sichuan 644000,China;Yibin Nanxi District Tax Service,State Taxation Administration,Yibin,Sichuan 644100,China)
出处 《内江师范学院学报》 CAS 2024年第2期37-43,共7页 Journal of Neijiang Normal University
基金 宜宾学院高层次人才“启航”计划项目(2019QD07)。
关键词 非线性矩阵方程 HERMITE正定解 迭代方法 扰动分析 nonlinear matrix equation Hermite positive definite solution iterative method perturbation analysis
  • 相关文献

参考文献7

二级参考文献70

  • 1陈小山,黎稳.关于矩阵方程X+A~*X^(-1)A=P的解及其扰动分析[J].计算数学,2005,27(3):303-310. 被引量:19
  • 2Ortega J M, Rheinboldt W C. Iteration solution of nonlinear equations in several variables[M]. New York: Academic Press, 1970.
  • 3Ferrante A, Levy B C. Hermitian solutions of the equation X = Q + NX^-1N^* [J]. Linear Algebra Appl., 1996, 247: 359-373.
  • 4Hasanov V I, Ivanov I G, Uhlig F. Improved perturbation estimates for the matrix equation X ± A^*X^-1A = Q[J]. Linear Algebra Appl., 2004, 379: 113-135.
  • 5Sun J G. Perturbation theory for algebraic Riccati equations[J]. SIAM J. Matrix Anal. Appl., 1998, 19: 39-65.
  • 6Ran A C M, Reurings M C B. On the nonlinear matrix equation X +A^*F(X)A = Q: solutions and perturbation theory[J]. Linear Algebra Appl., 2002, 346: 15-26.
  • 7Hasanov V I, Ivanov I G. On two perturbation estimates of the extreme solutions to the equations X ± A^*X ^-1A = Q[J]. Linear Algebra Appl., 2006, 413: 81-92.
  • 8Rice J R. A theory of condition[J]. J. SIAM Numer. Anal, 1966, 3: 287-310.
  • 9Sun J G. Condition number of algebraic Riccati equations in the Frobenius norm[J]. Linear Algebra Appl., 2002, 350: 237-261.
  • 10Sun J G, Xu S F. Perbation analysis of the maximal solution of matrix equation X + A^*X^-1A = P.Ⅱ[J]. Linear Algebra Appl., 2003, 362: 211-228.

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部