期刊文献+

基于多语义信息融合的事件检测模型 被引量:1

Event Detection Model Based on Semantic Information Fusion
原文传递
导出
摘要 [目的]通过融合多类语义信息,提高事件检测任务准确性。[方法]首先,利用Bi-LSTM模型编码非关系类语义信息;其次,基于关系类语义信息生成关系图,利用多尺度卷积神经网络捕获邻接矩阵蕴含的空间信息并与词向量进行融合;最后,构建Gated-GCN模型动态聚合并更新相邻词向量间的关系类语义信息,增强词向量的表征能力。[结果]基于ACE05基准数据集,与现有主流事件检测模型进行对比实验,所提模型的F1值达到76.3%,相较于最优的基准模型提升1.2个百分点。[局限]研究基于基准数据集,需要在一般的数据集上进行模型验证。[结论]融合多类语义信息能够有效提升事件检测性能。 [Objective]This paper aims to improve the accuracy of event detection tasks by fusing semantic information.[Methods]First,we stored the non-relational semantic information with an initial word vector and encoded them with the Bi-LSTM model to aggregate their contexts.Then,we developed a relation graph based on relational semantic information.Third,we used a multi-scale convolutional neural network to capture the spatial information from the adjacency matrix and fuse it with the word vector.Finally,we built a Gate-GCN model to aggregate relational semantic information between adjacent word vectors to enhance their representation ability.[Results]We examined the new model with the ACE05 benchmark dataset.Our method’s F1 value reached 76.3%,which was 1.2%higher than the existing mainstream models.[Limitations]The proposed model needs to be validated with general datasets.[Conclusions]Fusion of multiple types of semantic information can effectively improve the event detection performance.
作者 魏建香 陆谦 韩普 黄卫东 Wei Jianxiang;Lu Qian;Han Pu;Huang Weidong(School of Management,Nanjing University of Posts and Telecommunications,Nanjing 210003,China;School of Internet of Things,Nanjing University of Posts and Telecommunications,Nanjing 210003,China;Key Research Base of Philosophy and Social Sciences in Jiangsu-Information Industry Integration Innovation and Emergency Management Research Center,Nanjing 210003,China)
出处 《数据分析与知识发现》 EI CSCD 北大核心 2023年第12期64-74,共11页 Data Analysis and Knowledge Discovery
基金 国家社会科学基金项目(项目编号:17CTQ022) 国家自然科学基金项目(项目编号:7227011403) 江苏高校哲学社会科学研究重大项目(项目编号:2020SJZDA102)的研究成果之一。
关键词 事件检测 信息抽取 多语义融合 门控线性单元 图卷积神经网络 Event Detection Information Extraction Multi-Semantic Fusion Gated Linear Unit Graph Convolutional Neural Network
  • 相关文献

参考文献4

二级参考文献7

共引文献84

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部