摘要
受岩溶地貌分布和岩溶发育的影响,岩溶地区降雨径流过程复杂,径流模拟有助于识别岩溶地区径流产生的主要影响因素。针对会仙岩溶湿地睦洞河小流域岩溶地貌特点,建立双水箱并联错时模型,采用以Excel为基础建立的人工神经网络进行参数优选。以睦洞河小流域实测出流量为评价依据,采用相对误差、Nash-Sutcliffe效率系数和相关系数对率定期和验证期的径流模拟效果进行评价,率定期的年均相对误差为7.5%、Nash-Sutcliffe效率系数为0.63、相关系数为0.72,验证期的年均相对误差为10.5%、Nash-Sutcliffe效率系数为0.56、相关系数为0.63,说明模型能够在研究区得到良好的模拟效果。对睦洞河小流域水箱模型径流模拟的参数敏感性进行分析,结果表明,地表下渗性能、岩溶快速流和慢速流的存在以及岩溶基流等岩溶地貌特点主要影响岩溶小流域的径流分配和产流量大小。
Influenced by the distribution of karst landforms and karst development,the process of rainfall runoff in karst regions is complicat⁃ed.Runoff simulation can help identify the main factors influencing runoff in karst areas.In this study,based on the karst landform character⁃istics of the small watershed of the Mudong River in Huixian Karst Wetland in the Lijiang River basin,parallel staggered time model of doub⁃le tanks was established and an artificial neural network was built by using Microsoft Excel for parameter optimization.The relative error,the Nash⁃Sutcliffe efficiency coefficient and the correlation coefficient were used to evaluate the simulation effects during calibration and validation based on the measured discharges in the small watersheds.The mean annual relative error of the regularization rate was 7.5%,the Nash⁃Sut⁃cliffe coefficient was 0.63 and the correlation coefficient was 0.72.During the validation period,the mean annual relative error was 10.5%,the Nash⁃Sutcliffe coefficient was 0.56 and the correlation coefficient was 0.63,indicating that the model was able to achieve good simulation results in the study area.Through the parameter sensitivity analysis of the runoff simulation of the Tank model in the small watershed of Mud⁃ong River,the results show that the karst geomorphological characteristics such as surface infiltration performance,the existence of karst fast flow and slow flow,and karst base flow mainly affect the runoff distribution and production flow in the karst small watershed.
作者
孔纯正
张红艳
代俊峰
吕玉娟
李子涛
万祖鹏
KONG Chunzheng;ZHANG Hongyan;DAI Junfeng;LYU Yujuan;LI Zitao;WAN Zupeng(College of Environmental Science and Engineering,Guilin University of Technology,Guilin 541004,China;Guangxi Collaborative Innovation Center for Water Pollution Control and Water Security in Karst Region,Guilin 541004,China;Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology,Guilin 541004,China;Shandong Electric Power Engineering Consulting Institute Corp.,Ltd.,Jinan 250013,China)
出处
《人民黄河》
CAS
北大核心
2024年第3期17-21,63,共6页
Yellow River
基金
国家自然科学基金资助项目(52269010)
广西科技重大专项课题(桂科AA20161004-1)
桂林市科技项目(20220114-2,20190216-2)。
关键词
水箱模型
岩溶湿地
径流
敏感性分析
tank model
karst wetlands
runoff
sensitivity analysis