期刊文献+

调控磁导率以优化高熵合金的自旋电子排列实现高效析氧反应

Optimizing spin arrangement by permeability modulation of high-entropy alloys to promote O–O formation for efficient water oxidation
原文传递
导出
摘要 磁场触发的催化剂轨道电子自旋排列已成为促进析氧反应的一种有趣而可行的策略.然而,具有强d-d库仑相互作用的高熵合金(HEAs)催化剂中的磁场增强机制尚未得到充分挖掘.在此,我们设计了具有优异软磁性的高熵合金金属片,在微小磁场下表现出显著的磁场增强催化作用,其磁导率可作为评估磁场增强的描述因子.具体地,仅施加50 mT的磁场,(FeCoNi)_(82.5)Cr_(17.5)HEAs的过电位下降就超过了36mV@10 mA cm^(-2).此外,过电位的降低与HEA的磁导率呈线性关系.原位拉曼光谱与理论计算结果表明,施加磁场可显著提高自旋密度,改善催化剂的3d电子与*O自由基的2p轨道之间的自旋相互作用,从而有效降低速率决定步骤(*O→*OOH)的能量障碍,进而促进O-O的形成. Magnetic field-triggered spin arrangements have emerged as an intriguing and viable strategy for enhancing the oxygen evolution reaction.However,the magnetic field-enhanced mechanism in high-entropy alloy(HEA)catalysts with strong d±d Coulomb interactions remains incompletely understood.In this study,metal-sheet HEAs with excellent soft-magnetic properties that exhibit remarkable field-enhanced catalysis under a minute magnetic field were designed.The permeability of these HEAs serves as a descriptor for assessing the enhancement.Specifically,the drop in the overpotential of(FeCoNi)_(82.5)Cr_(17.5) HEAs exceeds 36 mV@10 mA cm^(−2) when applying a field of only 50 mT.Furthermore,reduction in overpotential demonstrates a direct linear correlation with the magnetic permeability of the HEAs.Theoretical calculations coupled with in-situ Raman spectroscopy elucidate that applying a magnetic field substantially significantly increases spin density and improves the spin interaction between the 3d electrons of the catalyst and the 2p orbital of the*O intermediate.This effectively lowers the energy barrier of the rate-determining step(*O→*OOH),thereby facilitating O±O formation.
作者 陈正杰 张涛 吴佳静 杨新春 郑勇平 唐永炳 于海滨 彭晶 成会明 Zheng-Jie Chen;Tao Zhang;Jiajing Wu;Xinchun Yang;Yongping Zheng;Yongbing Tang;Hai-Bin Yu;Jing Peng;Hui-Ming Cheng(Faculty of Materials Science and Energy Engineering,Institute of Technology for Carbon Neutrality,Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences,Shenzhen 518055,China;Wuhan National High Magnetic Field Center&School of Physic,Huazhong University of Science and Technology,Wuhan 430074,China;Institute of Information Technology,Shenzhen Institute of Information Technology,Shenzhen 518172,China;Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality,Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences,Shenzhen 518055,China;Shenyang National Laboratory for Materials Science,Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China)
出处 《Science China Materials》 SCIE EI CAS CSCD 2024年第2期598-607,共10页 中国科学(材料科学)(英文版)
基金 financially supported by the National Natural Science Foundation of China(52188101,Cheng HM,22275205,Peng J) Shenzhen Basic Research Project(JCYJ20200109144616617,Cheng HM) the Science and Technology Foundation of Shenzhen(JCYJ20220530154404010,Peng J) Guangdong Basic and Applied Basic Research Foundation(2023B1515020102,Peng J 2022A1515110408,Chen ZJ) China Postdoctoral Science Foundation(2022M713270,Chen ZJ) the Cross Institute Joint Research Youth Team Project of SIAT(E25427,Peng J) supported by the public computing service platform provided by the Network and Computing Center of Huazhong University of Science and Technology。
  • 相关文献

参考文献6

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部