期刊文献+

面向实际场景SLAM应用的光照适应性研究

Illumination adaptability of SLAM applications in real scenes
下载PDF
导出
摘要 为探究环境感知设备在SLAM算法应用过程中的光照适应性问题,在不同光照强度下分别进行激光雷达和深度相机SLAM算法的验证性评估实验.基于四轮差速机器人,搭载16线激光雷达和深度相机,结合LOAM(Lidar Odometry And Mapping)和RTAB-MAP(Real-Time Appearance-Based Mapping)算法,分别在明暗环境中分析验证设备光照适应性.实验结果表明:在明亮环境下,基于视觉SLAM和激光SLAM系统偏差的中误差分别为0.203和0.644 m;在黑暗环境中两者偏差的中误差分别为0.282和0.683 m;深度相机在明、暗环境中的定位建图效果均优于激光雷达,深度相机的光照适应性更强. To explore the illumination adaptability of environmental perception equipment in application of SLAM(Simultaneous Localization And Mapping),comparative experiments of lidar and depth camera for SLAM were carried out under different illumination intensities.Combined with the LOAM(Lidar Odometry And Mapping)and RTAB-MAP(Real-Time Appearance-Based Mapping)algorithms,a 16-line lidar and a depth camera were placed on a four-wheel differential robot to carry out SLAM application in bright and dark environments.The experimental results show that in bright environment,the median errors of system deviations are 0.203 m and 0.644 m for the visual SLAM and lidar SLAM,respectively,which are 0.282 m and 0.683 m respectively in dark environment.The depth camera outperforms the lidar in positioning and mapping performance in both bright and dark environment,and it can be concluded that the depth camera is more illumination adaptable.
作者 柯福阳 陆佳嘉 杭琦琳 宋宝 陈伟超 KE Fuyang;LU Jiajia;HANG Qilin;SONG Bao;CHEN Weichao(Wuxi Research Institute,Nanjing University of Information Science&Technology,Wuxi 214000,China;School of Remote Sensing&Geomatics Engineering,Nanjing University of Information Science&Technology,Nanjing 210044,China;School of Internet of Things Engineering,Wuxi University,Wuxi 214105,China;School of Automation,Nanjing University of Information Science&Technology,Nanjing 210044,China;School of Spatial Information and Surveying and Mapping Engineering,Anhui University of Science&Technology,Huainan 232001,China)
出处 《南京信息工程大学学报(自然科学版)》 CAS 北大核心 2024年第1期128-136,共9页 Journal of Nanjing University of Information Science & Technology(Natural Science Edition)
基金 2020年无锡市科技发展资金(N20201011) 第十六批江苏省“六大人才高峰”高层次人才项目(XYDXX-045) 江苏省自然科学基金(BK20211037)。
关键词 激光SLAM 视觉SLAM RTAB-MAP算法 LOAM算法 lidar SLAM visual SLAM(VSLAM) real-time appearance-based mapping(RTAB-MAP) lidar odometry and mapping(LOAM)
  • 相关文献

参考文献1

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部