期刊文献+

基于内聚力单元的石拱桥数值模拟

NUMERICAL SIMULATION OF MASONRY BRIDGE ON COHESIVE ELEMENT
下载PDF
导出
摘要 古石拱桥一般由块石砌筑而成,材料有明显的非匀质性,且古石拱桥在长期荷载作用下很容易产生累计变形改变拱圈几何形状,进而影响其结构受力,采用传统整体式有限元模型很难准确模拟古石拱桥的受力性能。因此,为精确模拟古石拱桥实际受力状态,分析承载力影响因素,采用参数化建模的方法建立两相数值模型,用内聚力单元模拟材料非线性,并通过自编程序引入初始缺陷。分析了几何参数及材料参数对拱桥承载能力和破坏模式的影响。结果表明几何参数与材料参数显著影响结构的承载能力和破坏模式,为石拱桥的设计及修复、加固工作提供依据。 Ancient stone arch bridges are generally built with block stones,the materials of which are with obvious heterogeneity.Moreover,the bridge is prone to cumulative deformation that changes the geometric shape of the arch ring under long-term loading,thereby affecting its structural stress.With traditional integral finite element models,it is difficult to accurately simulate the stress performance of the ancient stone arch bridge.A parameterized model⁃ing method is used to establish a two-phase numerical model to accurately simulate the actual stress state of the an⁃cient stone arch bridge and analyze the factors affecting its bearing capacity.The material nonlinearity is simulated through cohesive elements,and initial defects are introduced through a self-designed program.The influence of geo⁃metric and material parameters on the bearing capacity and failure mode of arch bridges is analyzed.The results indi⁃cate that geometric and material parameters significantly affect the bearing capacity and failure mode of the struc⁃ture,providing a basis for the design,repair,and reinforcement of stone arch bridges.
作者 邹金粟 王柏生 ZOU Jinsu;WANG Baisheng(Department of Civil Engineering,Zhejiang University,Hangzhou 310058,China)
出处 《低温建筑技术》 2024年第1期37-41,共5页 Low Temperature Architecture Technology
关键词 石拱桥 初始缺陷 两相数值模型 内聚力单元 masonry bridge initial imperfections two-phase numerical model cohesive elements
  • 相关文献

参考文献3

二级参考文献30

  • 1李光,唐丽,宋海波.合河桥主体结构的保护与维修研究[J].工业建筑,2011,41(S1):809-812. 被引量:3
  • 2中华人民共和国交通部.JTGD61-2005公路圬工桥涵设计规范[S].北京:人民交通出版社,2005.
  • 3钱令希.赵州桥的承载能力分析[J].土木工程学报,1987,20(4):39-46.
  • 4Gianmarco D F. Assessment of the load-carrying capacity of muki-span masonry arch bridges using fibre beam elements [J]. Engineering Structures, 2009,31(8) : 1634-1647.
  • 5Toth A R,Orbdn Z, Bagi K. Discrete element analysis of a stone masonry arch [J]. Mechanics Research Communications, 2009,36(4) : 469-480.
  • 6Fanning P J, Boothby T E. Three-dimensional model- ling and full-scale testing of stone arch bridges[J]. Computers & Amp Structures, 2001, 79 (29-30): 2645-2662.
  • 7Dugdale D S. Yielding of steel sheets containing slits [J]. Journal of the Mechanics and Physics of Solids, 1960,8(2) :100-104.
  • 8Yang Q D, Thouless M D. Mixed-mode fracture analyses of plastically-deforming adhesive joints [J]. International Journal of Fracture, 2001, 110 (2) : 175-187.
  • 9Yang Q D,Thouless M D,Ward S M. Numerical sim- ulations of adhesively-bonded beams failing with extensive plastic deformation [J]. Journal of the Mechanics and Physics of Solids, 1999,47 (6) : 1337- 1353.
  • 10Yang Q, Cox B. Cohesive models for damage evolu- tion in laminated composites[J].International Jour- nal of Fracture, 2005,133(2) : 107.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部