摘要
文章将人口位置大数据应用到校区尺度的土地集约利用评价中,为合理评价高校教育用地集约利用程度提供参考依据。研究发现:(1)各校区工作日与节假日、同一天不同时点人口在不同功能区的聚集情况存在差异。(2)老校区建成区面积占比较大,建筑密集,但容积率较低,人员较少、分布分散,总体利用效率较低;新校区面积较大,建筑密度较低,但容积率较高,人数众多、人口分布集中,整体利用效率更高。结果表明,人口位置大数据在高校土地集约利用评价中具有重要作用,合理评价高校教育用地集约利用程度,需将评价尺度具体到校区级,根据实际情况揭示不同校区土地集约利用水平,并在此基础上因校区施策,促进土地集约高效利用。
The purpose of this paper is to apply big data of population location into the evaluation of land use intensity of campus scale,and provide a scientific basis for the rational evaluation of the degree of intensive use of educational land in universities.The study found that:1)There are obvious differences in the population gathering situation of each campus on working days and holidays.At different time points,the population gathering situation in different functional areas has difference.2)Although the old campus has a large built-up area and dense buildings,it has a low floor area ratio,fewer people,a more scattered distribution,and low overall utilization efficiency;The new campus has a large area and low building density,but a high floor area ratio,with a large number of people and a concentrated population distribution,the overall utilization efficiency is higher.In conclusion,the study demonstrates that population location big data plays an important role in the evaluation of intensive use of land in universities.To correctly evaluate the degree of intensive use of educational land in universities,it is necessary to specify the evaluation scale to the campus level and reveal the intensive use of land in different campuses according to the actual situation of different campuses.On this basis,universities should implement corresponding policies based on campus conditions to promote the intensive and effective use of land.
作者
郝佳琦
王亚华
张竞一
王云
邓宛净
HAO Jiaqi;WANG Yahua;ZHANG Jingyi;WANG Yun;DENG Wanjing
出处
《现代城市研究》
北大核心
2024年第1期83-89,共7页
Modern Urban Research
基金
国家自然科学基金项目(42001196,42271264)
教育部人文社科基金项目(20YJCZH069)。
关键词
土地集约利用评价
人口位置大数据
校区
南京师范大学
the land evaluation of intensive utilization
population location big data
campus
Nanjing Normal University