期刊文献+

基于软阈值降噪的脉冲卷积神经网络轴承故障诊断方法 被引量:1

Bearing fault diagnosis method based on soft threshold denoising for spiking convolutional neural network
下载PDF
导出
摘要 针对工业场景下滚动轴承信号易受噪声干扰,导致故障诊断准确率低和稳定性差的问题,本文提出一种基于软阈值降噪的脉冲卷积神经网络诊断方法。该方法使用软阈值滤波去噪,运用带时间标签的卷积层处理二维信号,增强动态特征提取能力。同时,通过引入IF和LIF神经元实现对时域和频域信息的联合编码,并采用替代梯度法进行端到端训练。实验结果显示,在信噪比为6dB时,所提方法的诊断准确率达100%,在信噪比为-6dB时诊断准确率达77.33%,优于其他常用方法,表明所提方法在噪声下具有良好的诊断效果和稳定性。 The signals of rolling bearings are easily interfered by noise in industrial environments,which reduces fault diagnosis accuracy and worsens stability.This paper proposes a diagnostic method based on soft threshold denoising for spiking convolutional neural network.Soft threshold filtering for noise reduction is proposed in this paper.This paper uses time-tagged convolutional layers to process two-dimensional signals to enhance dynamic feature extraction capabilities.IF and LIF neurons are introduced to jointly encode time domain and frequency domain information,and the surrogate gradient method is used for end-to-end training.The results show that the diagnostic accuracy reaches 100%under the signal-to-noise ratio of 6dB,and still reaches 77.33%under the signal-to-noise ratio of−6dB.The results of this method have certain advantages compared with commonly used methods,which verifies that the proposed method has better diagnostic results and higher stability under noise.
作者 李浩 黄晓峰 邹豪杰 孙英杰 LI Hao;HUANG Xiaofeng;ZOU Haojie;SUN Yingjie(College of Railway Transportation,Hu’nan University of Technology,Zhuzhou,Hu’nan 412007;College of Computer Science,Hu’nan University of Technology,Zhuzhou,Hu’nan 412007)
出处 《电气技术》 2024年第2期12-20,共9页 Electrical Engineering
基金 湖南省自然科学基金(2022JJ50088、2023JJ50198)。
关键词 故障诊断 软阈值 脉冲神经网络(SNN) 替代梯度法 fault diagnosis soft threshold spiking neural network(SNN) surrogate gradient method
  • 相关文献

参考文献10

二级参考文献110

共引文献85

同被引文献17

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部