期刊文献+

基于神经网络的实时事故预测方法研究进展

Research Progress of Real-time Accident Prediction Methods Based on Neural Networks
下载PDF
导出
摘要 道路交通事故预测作为道路主动安全管理的重要组成部分,在降低事故发生概率、帮助管理者制定安全决策等方面起着重要作用。随着数据需求的不断增加,传统方法已无法满足大数据的需求,机器学习和人工智能算法在动态、实时和复杂情况下的道路交通事故预测领域显示出强大的潜力。文章从数据获取和特征变量选择开始介绍,详细叙述了基于机器学习的神经网络及与深度学习结合后该方法在国内外的相关研究,分析了使用神经网络相关方法在建模时会面临的优缺点,最后对基于神经网络的交通实时事故预测方法进行了总结及展望,给出未来的发展趋势。 As an important part of active road safety management,road traffic accident prediction plays an important role in reducing the probability of accidents and helping managers make safety decisions.With the increasing demand for data,traditional methods can no longer meet the needs of big data,and machine learning and artificial intelligence algorithms have shown strong potential in the field of road traffic accident prediction in dynamic,real-time and complex situations.This paper introduces the data acquisition and the selection of characteristic variables,describes in detail the relevant research of the neural network based on machine learning and the combination of the method with deep learning at home and abroad,analyzes the advantages and disadvantages of using the neural network correlation method in modeling,and finally summarizes and looks forward to the realtime traffic accident prediction method based on neural network,and gives the future development trend.
作者 炎天策 YAN Tiance(School of Automobile,Chang'an University,Xi'an 710064,China)
出处 《汽车实用技术》 2024年第5期176-181,共6页 Automobile Applied Technology
关键词 交通工程 实时事故预测 神经网络 深度学习 Traffic engineering Real-time accident prediction Neural network Deep learning
  • 引文网络
  • 相关文献

参考文献8

二级参考文献33

  • 1张文彤.SPSS11统计分析教程[M].北京:北京希望电子出版社,2002.21-24.
  • 2Qiu L, Nixon W A. Effects of adverse weather on traffic crashes systematic review and meta-analysis [J]. Transportation Research Record, 2008, 2055: 139-146.
  • 3Brodsky H, Hakkert A S. Risk of a road accident in rainy weather[J]. Accident Anal Prevention, 1988,20(2):161-176.
  • 4Andrey J, Yagar S. A temporal analysis of rainrelated crash risk[J]. Accident Anal Prevention, 1993, 25(4) :465-472.
  • 5Khattak A J, Knapp K K. Interstate highway crash injuries during winter snow and nonsnow events[J]. Transportation Research Record, 2001, 1746: 30-36.
  • 6Eisenberg D, Warner K E. Effects of snowfalls on motor vehicle collisions,injuries, and fatalities[J]. American Journal of Public Health, 2005, 95(2): 120-124.
  • 7Abdelaty M, Uddin N, Abdalla F, et al. Predicting freeway crashes based on loop detector data using matched case-control logistic regression[J]. Transportation Research Record, 2004, 1897: 88-95.
  • 8Abdel-aty M, Uddin N, Pande A. Split models for predicting multi-vehicle crashes during high-speed and low-speed operating conditions on freeways[J]. Transportation Research Record, 2005, 1908: 51- 58.
  • 9Abdelaty M, Pande A. Identifying crash propensity using specific traffic speed conditions[J]. Journal of Safety Research, 2005, 36(1): 97-108.
  • 10Lee C, Saccomanno F, Hellinga B. Analysis of crash precursors on instrumented freeways [J]. Transportation Research Record, 2002, 1784:1-8.

共引文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部