期刊文献+

Effect of proppant sizes and injection modes on proppant transportation and distribution in the tortuous fracture model

原文传递
导出
摘要 Particle-fluid transport and placement mechanism in tortuous fracture played a crucial role in uncon-ventional reservoirs.Currently,most studies focused on mono-size proppant with fluid transport pro-cesses in tortuous fractures.However,the mixture-size proppant with fluid movement mechanism in tortuous fracture was still uncommon.Therefore,this study designed and applied a series of experiments with a physical analog model of a tortuous fracture with 120°and 90°-angled bends and combined high-speed camera-based equipment.This experimental system was used to track different-mixture-sized proppant particle motion trajectories for a series of proppant injection schemes;The following conclu-sions were drawn from this study:1.The pile-up processes mechanism in all investigated schemes were similar and could be reduced to four main stages.2.The packing structure at both sides of the fracture wall had different variation rates,which were controlled by the mix ratio(change from 1∶1-1∶5)of proppant size.3.Some new packing patterns,such as Zebra Stripe,had occurred,controlled by the different proppant injection sequences.4.Small-sized mono-proppant(30/50 mesh)had the highest transport efficiency in the tortuous fracture,followed by the mixed-sized multi-proppant(10/20 mesh:30/50 mesh),large-sized proppant(10/20 mesh)was the worst.5.An optimized alternating in-jection mode was recommended as injecting small-sized proppant first(30/50 mesh)and followed by mixed-sized multi-proppant(10/20 mesh:30/50 mesh),which could contribute to obtaining the optimal both proppant packing height and travel distance in tortuous fracture.6.Two correlations were devel-oped for predicting the proppant packing height and transportation distance.
出处 《Particuology》 SCIE EI CAS CSCD 2024年第1期261-280,共20页 颗粒学报(英文版)
基金 supported by the Natural Science Foundation of Sichuan province of"Settlement and Transport Mechanism of Biomimetic Dandelion Proppant in Fracture"(grant No.23NSFSC5596).
  • 相关文献

参考文献1

  • 1Li, Hang,Bai, Xiang,Huang, Xuan-Jing,Zhang, Chang-Shui.Preface[J].Journal of Computer Science & Technology,2017,32(4):663-666. 被引量:41

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部