期刊文献+

基于深度学习和图像识别的变电站虚端子连接校核技术

Verification Technology for Virtual Terminal Connection Based on Deep Learning and Attention Image Recognition
下载PDF
导出
摘要 针对变电站配置描述(substation configuration description, SCD)校验工作量庞大以及人工校验效率低、准确率低的问题,提出一种基于深度学习和图像识别的虚端子连接智能校核技术。首先利用Tensorflow框架的Faster R-CNN模型,对SCD虚连接图中的保护、测控智能电子设备(intelligent electronic device, IED)进行智能辨识,将端列端识别的Attention-OCR方法和“Advanced EAST+Tesseract OCR”的两阶段识别方法进行对比,选择准确率较高的Attention-OCR端到端识别方法实现SCD虚连接图中的文字、数字识别;然后,利用图像处理技术实现SCD虚连接图连接关系识别,数据整理后得到SCD侧虚连接表。最后,开展SCD侧与Excel侧虚连接表正向与反向2个方向的比对,形成核对报告,筛选出不对应的信息,有效地提高了SCD校验的效率和准确率。 In response to the heavy workload of substation configuration description(SCD)verification and current low efficiency and accuracy of manual verification,this paper proposes a virtual terminal connection intelligent verification technology based on deep learning and image recognition.Firstly,it uses Faster R-CNN model of Tensorflow framework to intelligently identify the protection and measurement and control intelligent electronic device(IED)in the SCD virtual connection graph.By comparing the two-stage recognition methods of Advanced EAST and Tesseract OCR with the end-to-end recognition methods of Attention-OCR,it selects the end-to-end Attention OCR method with higher accuracy ultimately to achieve text and number recognition in the SCD virtual connection graph.Then,it uses image processing technology to identify the connection relationship of the SCD virtual connection graph,and organizes the data to obtain the SCD side virtual connection table.Through the forward and reverse comparison of the virtual connection tables on the SCD side and Excel side,a verification report is finally formed to screen out non corresponding information,effectively solving the current problems of low efficiency and accuracy in manual comparison.
作者 成佳富 罗振华 廖惠琴 汤野 孙迪飞 刘世丹 陈磊 CHENG Jiafu;LUO Zhenhua;LIAO Huiqin;TANG Ye;SUN Difei;LIU Shidan;CHEN Lei(Electric Power Dispatching Control Center of Guangdong Power Grid Co.,Ltd.,Guangzhou,Guangdong 510055,China;CSG Guangdong Huizhou Power Supply Bureau,Huizhou,Guangdong 516001,China;Wuhan Kemov Electric Co.,Ltd.,Wuhan,Hubei 430223,China)
出处 《广东电力》 北大核心 2024年第2期73-79,共7页 Guangdong Electric Power
基金 中国南方电网有限责任公司职工创新项目(031300KZ23040012)。
关键词 变电站配置描述 深度学习 图像识别 虚端子表 智能校核 substation configuration description(SCD) deep learning image recognition virtual terminal table intelligent verification
  • 相关文献

参考文献10

二级参考文献69

  • 1侯亮,冯亮,杨庆伟.智能变电站虚拟回路自动化校核技术的研究[J].电网与清洁能源,2015,31(6):44-48. 被引量:14
  • 2刘健,吴媛,刘巩权.配电馈线地理图到电气接线图的转换[J].电力系统自动化,2005,29(14):73-77. 被引量:21
  • 3国家电网公司.智能变电站技术导则[S].北京:[出版者不详],2009.
  • 4Q/GDW396-2009IEC61850工程继电保护应用模型[S].
  • 5李欣,宋婷婷,何险峰.基于VF2算法的分子二维子结构检索[J].计算机与应用化学,2007,24(11):1551-1554. 被引量:6
  • 6IEC 61850 -6, Communication Networks and Systems in Substations: Part 6 Configuration Description Language for Communication in Electrical Substations Related to IEDs. IS].
  • 7A. Apostolov, D. Tholomier. Simplifying the Configura- tion of Multifunctional Protection Relays [ C ]. Annual Conference for Protective Relay Engineers, 2005, College Station, TX, United states :281 - 286.
  • 8WANG Haizhu, CAI Zexiang, SU Zhongyang, et al. The Analysis of Relay Protection Communication Mechanism Based on IEC61850 EC]//The International Conference on Advanced Power SystemAutomation and Protection. Beijing:IEEE, 2011: 223-227.
  • 9DL/T86().6-2008,变电站通信网络和系统第6部分:与智能电子设备有关的变电站内通信配置描述语言[s].
  • 10沙树名,林峰.一种基于CIM的厂站接线图自动生成技术[J].电力系统自动化,2008,32(21):68-71. 被引量:29

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部